sinusoidal endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

666
(FIVE YEARS 116)

H-INDEX

62
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Bethany H. James ◽  
Pantelitsa Papakyriacou ◽  
Matthew J. Gardener ◽  
Louise Gliddon ◽  
Christopher J. Weston ◽  
...  

Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhuo Yu ◽  
Jianfeng Guo ◽  
Yun Liu ◽  
Menglin Wang ◽  
Zhengsheng Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) developed in fibrotic liver does not respond well to immunotherapy, mainly due to the stromal microenvironment and the fibrosis-related immunosuppressive factors. The characteristic of liver sinusoidal endothelial cells (LSECs) in contributing to fibrosis and orchestrating immune response is responsible for the refractory to targeted therapy or immunotherapy of HCC. We aim to seek a new strategy for HCC treatment based on an old drug simvastatin which shows protecting effect on LSEC. Method The features of LSECs in mouse fibrotic HCC model and human HCC patients were identified by immunofluorescence and scanning electron microscopy. The effect of simvastatin on LSECs and hepatic stellate cells (HSCs) was examined by immunoblotting, quantitative RT-PCR and RNA-seq. LSEC-targeted delivery of simvastatin was designed using nanotechnology. The anti-HCC effect and toxicity of the nano-drug was evaluated in both intra-hepatic and hemi-splenic inoculated mouse fibrotic HCC model. Results LSEC capillarization is associated with fibrotic HCC progression and poor survival in both murine HCC model and HCC patients. We further found simvastatin restores the quiescence of activated hepatic stellate cells (aHSCs) via stimulation of KLF2-NO signaling in LSECs, and up-regulates the expression of CXCL16 in LSECs. In intrahepatic inoculated fibrotic HCC mouse model, LSEC-targeted nano-delivery of simvastatin not only alleviates LSEC capillarization to regress the stromal microenvironment, but also recruits natural killer T (NKT) cells through CXCL16 to suppress tumor progression. Together with anti-programmed death-1-ligand-1 (anti-PD-L1) antibody, targeted-delivery of simvastatin achieves an improved therapeutic effect in hemi-splenic inoculated advanced-stage HCC model. Conclusions These findings reveal an immune-based therapeutic mechanism of simvastatin for remodeling immunosuppressive tumor microenvironment, therefore providing a novel strategy in treating HCC. Graphical Abstract


2021 ◽  
Vol 118 (47) ◽  
pp. e2115323118
Author(s):  
Ankit Butola ◽  
David A. Coucheron ◽  
Karolina Szafranska ◽  
Azeem Ahmad ◽  
Hong Mao ◽  
...  

Visualization of three-dimensional (3D) morphological changes in the subcellular structures of a biological specimen is a major challenge in life science. Here, we present an integrated chip-based optical nanoscopy combined with quantitative phase microscopy (QPM) to obtain 3D morphology of liver sinusoidal endothelial cells (LSEC). LSEC have unique morphology with small nanopores (50-300 nm in diameter) in the plasma membrane, called fenestrations. The fenestrations are grouped in discrete clusters, which are around 100 to 200 nm thick. Thus, imaging and quantification of fenestrations and sieve plate thickness require resolution and sensitivity of sub-100 nm along both the lateral and the axial directions, respectively. In chip-based nanoscopy, the optical waveguides are used both for hosting and illuminating the sample. The fluorescence signal is captured by an upright microscope, which is converted into a Linnik-type interferometer to sequentially acquire both superresolved images and phase information of the sample. The multimodal microscope provided an estimate of the fenestration diameter of 119 ± 53 nm and average thickness of the sieve plates of 136.6 ± 42.4 nm, assuming the constant refractive index of cell membrane to be 1.38. Further, LSEC were treated with cytochalasin B to demonstrate the possibility of precise detection in the cell height. The mean phase value of the fenestrated area in normal and treated cells was found to be 161 ± 50 mrad and 109 ± 49 mrad, respectively. The proposed multimodal technique offers nanoscale visualization of both the lateral size and the thickness map, which would be of broader interest in the fields of cell biology and bioimaging.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3981-3981
Author(s):  
Shweta Gudapati ◽  
Tomasz W. Kaminski ◽  
Ravi Vats ◽  
Prithu Sundd ◽  
Tirthadipa Pradhan-Sundd

Abstract Hemophilia A is an X-linked recessive bleeding disorder that affects 1 in 5000 males and is caused by procoagulant factor VIII deficiency. Affected people are at danger of spontaneous bleeding into organs, which can be fatal and lead to persistent damage. Current therapy includes intravenous infusion of FVIII protein concentrate which carries the danger of transmitting blood-borne diseases. As a result of recent advancements in liver-directed gene transfer, gene therapy based innovative strategy for treating hemophilia has emerged. In patients with severe hemophilia B, intravenous infusion of an adeno-associated viral (AAV) vector encoding factor IX (FIX) under the control of a liver-directed promoter resulted in expression of FIX for a considerable period of time. In hemophilia-A patients, gene treatment utilizing AAV vectors has demonstrated to be less effective than Hemophilia B due to the size of the F8 coding sequence and the decreased release of FVIII protein. Among other concerns high immunogenicity of FVIII with 25-30% of hemophilia A patients forming inhibitors and overexpression of FVIII in hepatocytes triggering a cellular stress response are significantly challenging. A phase 1 clinical trial is now being conducted to examine the AAV8 induced liver directed gene expression strategy to circumvent these challenges. The Factor VIII null mouse has been effective in understanding the disease pathogenesis as well as the development of liver directed novel gene therapy techniques to treat hemophilia. FVIII is predominantly produced in the liver. Thus, liver directed adenoviral and retroviral vectors have been studied by several groups to understand the gene delivery method in hemophilia. A few of these studies have shown limited effectiveness in hemophilia animal models. Although the coagulation anomaly seen in hemophilia murine model was completely repaired immediately after liver directed adenovirus-mediated treatment, the effect was transient. Additionally, adeno associated virus (AAV8)-FVIII overexpression has been associated with increased cellular stress. In this study we evaluated the stability and efficacy of liver driven gene transfer mechanism in FVIII null mouse using recombinant AAV8 vector. Recombinant AAV8 vector delivered through the systemic circulation successfully transduces to target tissues via passing through the permeable barrier of sinusoidal endothelial cell. The bidirectional passage through sinusoidal endothelial cell is mainly supported by the presence of discontinuous fenestrated endothelium. Remarkably, we found that liver directed gene transfer was significantly delayed in FVIII null mice. Using quantitative liver intravital imaging we found that upon AAV8-GFP administration liver sinusoidal endothelial cells shows increased apoptosis. Moreover, structural analysis of the liver sinusoidal endothelial cells using intravital and electron micrograph imaging showed significant structural functional difference in liver sinusoidal endothelial cells of FVIII KO mouse. Work is currently underway to understand how absence of FVIII can affect the LSECs. In conclusion, detailed molecular characterization of LSEC-mediated liver directed gene transfer in a hemophilia mouse model is critical for understanding the efficacy and stability of gene-based hemophilia treatment. Disclosures Sundd: Bayer: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Behring Inc: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 759-759
Author(s):  
Xiuqi Li ◽  
Larisa Lozovatsky ◽  
Jackie A. Fretz ◽  
Karin E. Finberg

Abstract Iron deficiency anemia (IDA) has been identified as a potent stimulator of FGF23 (fibroblast growth factor 23), a phosphaturic hormone classically thought to be produced by bone-embedded osteocytes. Recently, both phlebotomy and erythropoietin administration have been shown to upregulate FGF23 production in bone marrow. However, the cell type(s) mediating FGF23 upregulation in states of perturbed erythropoiesis require further clarification. Tmprss6 -/- mice exhibit hepcidin elevation leading to systemic iron deficiency and iron-restricted anemia. We previously reported that Tmprss6-/- mice exhibit altered phosphate balance, elevated circulating FGF23, and Fgf23 mRNA upregulation in bone marrow but not cortical bone. Here, we clarify the sites of Fgf23 promoter activity in Tmprss6 -/- bone marrow using a reporter allele in which the enhanced green fluorescent protein (eGFP) coding sequence has been knocked into the endogenous Fgf23 locus. We generated Tmprss6 +/+,Tmprss6 +/-, and Tmprss6 -/- littermates of both sexes that carried either one (Fgf23 +/eGFP) or zero (Fgf23 +/+) copies of the reporter allele. Tmprss6-/- mice showed hyperhepcidinemia, hypoferremia, microcytic anemia, and tissue iron deficiency, which were not altered by heterozygous Fgf23 disruption (Figure 1A-C). By ELISA, Tmprss6-/- Fgf23 +/eGFP mice showed plasma levels of "total" FGF23 (intact, active hormone and C-terminal cleaved fragments) that remained markedly elevated compared to Tmprss6+/+ littermates (Figure 1D). Total FGF23 elevation in Tmprss6-/- Fgf23 +/eGFP mice was slightly less pronounced than Tmprss6-/- Fgf23 +/+ mice, suggesting an effect of Fgf23 gene dosage. In mice with 2 intact Fgf23 alleles, serum erythropoietin showed a strong linear correlation with plasma total FGF23. By confocal imaging, femurs of mice carrying the Fgf23 eGFP allele showed green fluorescence in vascular regions of the bone marrow but not in the bone cortex. Green fluorescence was more intense in Tmprss6-/- Fgf23+/eGFP mice than non-anemic controls. By flow cytometry of enzymatically digested bone marrow, we observed bright green fluorescence in a subset of endothelial cells (CD45 - Ter119 - CD31 +) exclusively in mice carrying the Fgf23 eGFP reporter allele (Figure 1E). The percentage of endothelial cells that were GFP bright was higher in Tmprss6-/- Fgf23 +/eGFP versus non-anemic mice. To clarify the endothelial cell subtype that expresses Fgf23, we mined published transcriptomic datasets from mice of normal iron balance and discovered higher Fgf23 mRNA in bone marrow sinusoidal endothelial cells compared to other bone marrow endothelial cell populations. Accordingly, we used anti-GFP immunohistochemistry in formalin-fixed bone marrow sections to assess Fgf23 eGFP reporter allele expression in the context of tissue architecture. Tmprss6-/- Fgf23 +/eGFP mice showed GFP expression in bone marrow sinusoidal endothelial cells, which was more intense than in non-anemic controls (Figure 1F). GFP reporter expression was also detected in rare cells of the thymus but not in liver, spleen, heart, muscle, or kidney. Collectively, our data reveal that bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in chronic IDA. Because IDA in Tmprss6-/- mice results from pathologic hepcidin elevation, we also sought to determine if bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in anemic mice with intact hepcidin regulation. We therefore subjected Fgf23 +/eGFP mice (with 2 intact Tmprss6 alleles) to a 500µl phlebotomy regimen (with saline volume replacement) known to induce marked anemia and hepcidin suppression. Compared to non-phlebotomized Fgf23 +/eGFP controls, phlebotomized Fgf23 +/eGFP mice showed severe anemia, elevated serum erythropoietin, and elevated plasma FGF23 18 hours after blood loss. Additionally, immunohistochemistry revealed more intense GFP expression in bone marrow sinusoidal endothelial cells of phlebotomized Fgf23 +/eGFP mice than non-phlebotomized controls. Taken together, our results show for the first time that bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in both acute and chronic anemia. Given the serum erythropoietin elevation in both models, our findings suggest that erythropoietin may act directly or indirectly on sinusoidal endothelial cells to promote FGF23 production during anemia. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Krisztina Németh ◽  
Zoltán Varga ◽  
Dorina Lenzinger ◽  
Tamás Visnovitz ◽  
Anna Koncz ◽  
...  

AbstractLiver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sabin Bhandari ◽  
Anett Kristin Larsen ◽  
Peter McCourt ◽  
Bård Smedsrød ◽  
Karen Kristine Sørensen

The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.


Sign in / Sign up

Export Citation Format

Share Document