scholarly journals Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation Factor X–virus binding

2005 ◽  
Vol 393 (2) ◽  
pp. 529-535 ◽  
Author(s):  
Joel R. Livingston ◽  
Michael R. Sutherland ◽  
Harvey M. Friedman ◽  
Edward L. G. Pryzdial

The HSV1 (herpes simplex virus type 1) surface has been shown recently to initiate blood coagulation by FVIIa (activated Factor VII)-dependent proteolytic activation of FX (Factor X). At least two types of direct FX–HSV1 interactions were suggested by observing that host cell-encoded tissue factor and virus-encoded gC (glycoprotein C) independently enhance FVIIa function on the virus. Using differential sedimentation to separate bound from free 125I-ligand, we report in the present study that, in the presence of Ca2+, FX binds directly to purified wild-type HSV1 with an apparent dissociation constant (Kd) of 1.5±0.4 μM and 206±24 sites per virus at saturation. The number of FX-binding sites on gC-deficient virus was reduced to 43±5, and the remaining binding had a lower Kd (0.7±0.2 μM), demonstrating an involvement of gC. Engineering gC back into the deficient strain or addition of a truncated soluble recombinant form of gC (sgC), increased the Kd and the number of binding sites. Consistent with a gC/FX stoichiometry of approximately 1:1, 121±6 125I-sgC molecules were found to bind per wild-type HSV1. In the absence of Ca2+, the number of FX-binding sites on the wild-type virus was similar to the gC-deficient strain in the presence of Ca2+. Furthermore, in the absence of Ca2+, direct sgC binding to HSV1 was insignificant, although sgC was observed to inhibit the FX–virus association, suggesting a Ca2+-independent solution-phase FX–sgC interaction. Cumulatively, these data demonstrate that gC constitutes one type of direct FX–HSV1 interaction, possibly providing a molecular basis for clinical correlations between recurrent infection and vascular pathology.

1985 ◽  
Vol 56 (1) ◽  
pp. 127-134 ◽  
Author(s):  
F Dall'Olio ◽  
N Malagolini ◽  
V Speziali ◽  
G Campadelli-Fiume ◽  
F Serafini-Cessi

1987 ◽  
Vol 68 (2) ◽  
pp. 545-554 ◽  
Author(s):  
I. Sjoblom ◽  
M. Lundstrom ◽  
E. Sjogren-Jansson ◽  
J. C. Glorioso ◽  
S. Jeansson ◽  
...  

2004 ◽  
Vol 29 (2-3) ◽  
pp. 181-189 ◽  
Author(s):  
Barbra Drolet ◽  
Kevin Mott ◽  
Andrew Lippa ◽  
Steven Wechsler ◽  
Guey-Chuen Perng

1990 ◽  
Vol 113-113 (3-4) ◽  
pp. 195-207 ◽  
Author(s):  
Y. Hidaka ◽  
S. Sakuma ◽  
Y. Kumano ◽  
H. Minagawa ◽  
R. Mori

2004 ◽  
Vol 78 (11) ◽  
pp. 5883-5890 ◽  
Author(s):  
Trine H. Mogensen ◽  
Jesper Melchjorsen ◽  
Lene Malmgaard ◽  
Antonella Casola ◽  
Søren R. Paludan

ABSTRACT Viral immune evasion strategies are important for establishment and maintenance of infections. Many viruses are in possession of mechanisms to counteract the antiviral response raised by the infected host. Here we show that a herpes simplex virus type 1 (HSV-1) mutant lacking functional viral protein 16 (VP16)—a tegument protein promoting viral gene expression—induced significantly higher levels of proinflammatory cytokines than wild-type HSV-1. This was observed in several cell lines and primary murine macrophages, as well as in peritoneal cells harvested from mice infected in vivo. The enhanced ability to stimulate cytokine expression in the absence of VP16 was not mediated directly by VP16 but was dependent on the viral immediate-early genes for infected cell protein 4 (ICP4) and ICP27, which are expressed in a VP16-dependent manner during primary HSV infection. The virus appeared to target cellular factors other than interferon-induced double-stranded RNA-activated protein kinase R (PKR), since the virus mutants remained stronger inducers of cytokines in cells stably expressing a dominant-negative mutant form of PKR. Finally, mRNA stability assay revealed a significantly longer half-life for interleukin-6 mRNA after infection with the VP16 mutant than after infection with the wild-type virus. Thus, HSV is able to suppress expression of proinflammatory cytokines by decreasing the stability of mRNAs, thereby potentially impeding the antiviral host response to infection.


Sign in / Sign up

Export Citation Format

Share Document