scholarly journals Muscle protein synthesis in the streptozotocin-diabetic rat. A possible role for corticosterone in the insensitivity to insulin infusion in vivo

1982 ◽  
Vol 202 (2) ◽  
pp. 363-368 ◽  
Author(s):  
B R Odedra ◽  
S S Dalal ◽  
D J Millward

The effect of insulin infusion in vivo on muscle protein synthesis was investigated in rats. In 10-days-streptozotocin-diabetic rats infused in vivo with amino acids and glucose, the rate of protein synthesis per unit of RNA (RNA activity) was markedly decreased. Pre-treatment with large doses of insulin at 17 and 1 h before the infusion fully restored RNA activity to normal. Infusion of insulin for 6 h with amino acids and glucose did not restore RNA activity to normal in the diabetic rats. However, in diabetic-adrenalectomized rats similar infusions of insulin fully restored RNA activity to normal. Measurements of plasma corticosterone concentrations indicated a 50% increase in the diabetic rats. Since pre-treatment with corticosterone suppressed the stimulatory effect of insulin infusion on RNA activity in adrenalectomized rats, and since corticosterone treatment for 6 days suppressed RNA activity even though insulin concentrations were elevated, it is suggested that increased concentrations of corticosterone are responsible for the lag in response to insulin in the diabetic rat. This means that the catabolic effects of glucocorticoids must be also considered together with the catabolic effect of insulin lack in diabetes.

1976 ◽  
Vol 231 (2) ◽  
pp. 441-448 ◽  
Author(s):  
JB Li ◽  
AL Goldberg

The effects of food deprivation on protein turnover in rat soleus and extensor digitorum longus (EDL) were investigated. Muscles were removed from fed or fasted growing rats, and protein synthesis and breakdown were measured during incubation in vitro. Rates of synthesis and degradation were higher in the dark soleus than in the pale EDL. One day after food removal protein synthesis and RNA content in the EDL decreased. On the 2nd day of fasting, rates of protein catabolism in this muscle increased. Little or no change in synthesis and degradation occurred in the soleus. Consequently, during fasting the soleus lost much less weight than the EDL and other rat muscles. In unsupplemented buffer or in medium containing amino acids, glucose, and insulin, the muscles of fasted rats showed a lower rate of protein synthesis expressed per milligram of tissue but not per microgram of RNA. Thus the decrease in muscle RNA on fasting was responsible for the reduced synthesis observed under controlled in vitro conditions. In vivo the reduction in muscle protein synthesis on fasting results both from a lower RNA content and lower rate of synthesis per microgram of RNA. Reduced supply of glucose, insulin, and amino acids may account for the lower rate of synthesis per microgram of RNA demonstrable in vivo.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


1984 ◽  
Vol 246 (6) ◽  
pp. E510-E515
Author(s):  
M. G. Buse ◽  
I. R. Cheema ◽  
M. Owens ◽  
B. E. Ledford ◽  
R. A. Galbraith

Insulin and branched-chain amino acids are known to stimulate protein synthesis in skeletal muscle. Extracts prepared from rat diaphragms after incubation in balanced salt solution and glucose alone yielded heat- and acid-stable, TCA-precipitable, nondialyzable factor(s) that inhibit protein synthesis when added to rabbit reticulocyte lysates. Polyribosomal profiles of inhibited lysates were consistent with a defect in peptide-chain initiation. Addition of insulin and amino acids to the diaphragm incubation media partially removed the inhibition seen with the muscle extract and was accompanied by an increase in polysomes and decreased subunits. Similarly, extracts prepared from rat hindlimb muscle 48 h after induction of diabetes were much more inhibitory in rabbit reticulocyte lysates than extracts from control rats. Polyribosomal profiles were consistent with defective peptide-chain initiation. Trypsin treatment before assay abolished the inhibitory activity of muscle extracts from diabetic rats. Because translation-inhibiting peptide(s) appear to be under metabolic and/or hormonal control, their possible role in muscle protein homeostasis warrants further study.


1993 ◽  
Vol 264 (6) ◽  
pp. E958-E965 ◽  
Author(s):  
P. H. McNulty ◽  
L. H. Young ◽  
E. J. Barrett

Whether insulin, at physiological concentrations, stimulates net muscle protein synthesis in vivo remains unresolved. To examine this, we infused either saline, insulin (2.8 mU.kg-1.min-1, euglycemic clamp), an amino acid solution, or insulin plus amino acids for 4 h into awake overnight-fasted rats. Heart and skeletal muscle protein synthesis was measured by either a continuous tracer infusion method, using L-[1-14C]leucine, L-[2,5-3H]leucine, or L-[ring-2,6-3H]phenylalanine or by injection of L-[ring-2,6-3H]phenylalanine with a pool-flooding bolus of unlabeled phenylalanine. In heart, synthesis rates obtained using the arterial plasma specific activity of [3H]phenylalanine administered as either a tracer infusion or flooding bolus were comparable in saline-treated rats (range 10.9 +/- 1.2 to 12.2 +/- 0.9%/day) and were not affected by infusion of insulin or amino acids. Estimates using continuous infusion of L-[1-14C]leucine were significantly lower (P < 0.001), except when unlabeled amino acids were given also. In skeletal muscle, rates estimated using the flooding bolus (6.7 +/- 0.8%/day) were also not affected by insulin or amino acids. Estimates using continuous infusion of [3H]leucine (2.6 +/- 0.3%/day) or [3H]phenylalanine (2.8 +/- 1.0%/day) were lower and were still lower using [14C]leucine (1.6 +/- 0.6%/day), but increased toward those estimated with the flooding bolus during amino acid infusion. We conclude that, in heart muscle of the mature rat in vivo, neither insulin nor amino acids affect protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


1982 ◽  
Vol 204 (3) ◽  
pp. 663-672 ◽  
Author(s):  
Bhanu R. Odedra ◽  
David J. Millward

The effect of corticosterone on protein turnover in skeletal muscle was investigated in growing rats. Protein synthesis was measured in vivo by the constant infusion of [14C]tyrosine. The extent to which any effect of corticosterone is modulated by the hyperinsulinaemia induced by steroid treatment was examined by giving the hormone not only to adrenalectomized rats but also to streptozotocin-induced diabetic rats maintained throughout the treatment period on two dosages of insulin by an implanted osmotic minipump. Approximate rates of protein degradation were also estimated in some cases as the difference between synthesis and net change in muscle protein mass. Measurements were also made of free 3-methylhistidine concentration in muscle and plasma. At 10mg of corticosterone/100g body wt. per day, growth stopped and muscle wasting occurred, whereas at 5 mg of corticosterone/100g body wt. per day no net loss of protein occurred. However, this low dose did induce muscle wasting when insulin concentration was regulated by a dose of 1.2 units/day. Protein synthesis was markedly depressed in all treated groups, the depression in the insulin-maintained rats being marginally more than in the hyperinsulinaemic adrenalectomized rats. The oxidative soleus muscle appeared to be less susceptible to the effect of the corticosterone than was the more glycolytic plantaris or gastrocnemius muscle. Any effect of the corticosterone on protein degradation was much less than its effects on protein synthesis. Where increases in the degradation rates appeared to occur in the rats treated with 10mg of corticosterone/100g body wt. per day, the increases were less than 20%. The free intracellular 3-methylhistidine concentrations were doubled in all groups treated with 5 mg of corticosterone/100g body wt. per day and increased 5-fold in the adrenalectomized rats treated with 10mg of corticosterone/100g body wt. per day, with no change in plasma concentration in any of the groups. It is therefore concluded that: (a) the suppression of protein synthesis is the main effect of glucocorticoids in muscle; (b) marked increases in insulin afford only minor protection against this effect; (c) stimulation of protein degradation may occur, but to a much lesser extent.


1996 ◽  
Vol 270 (1) ◽  
pp. E60-E66 ◽  
Author(s):  
R. Jacob ◽  
X. Hu ◽  
D. Niederstock ◽  
S. Hasan ◽  
P. H. McNulty ◽  
...  

Infusion of insulin-like growth factor I (IGF-I) lowers plasma amino acid and insulin concentrations, which may limit the capacity of IGF-I to promote muscle protein synthesis in vivo. We measured heart and skeletal muscle incorporation of continuously infused L-[ring-2,6-3H]phenylalanine in awake postabsorptive rats receiving 4-h intravenous infusions of saline (n = 11), IGF-I (1 microgram.kg-1.min-1) with (n = 10) or without (n = 11) amino acid replacement, or IGF-I with insulin replacement (n = 8). There were no significant increases in muscle protein synthesis during the infusion of IGF-I alone, which was associated with decreases in both plasma insulin (52 +/- 5%, P < 0.001) and amino acids (25 +/- 5%, P < 0.05). When IGF-I was given together with amino acids, protein synthesis was significantly increased in gastrocnemius (4.7 +/- 0.4 vs. 2.5 +/- 0.3%/day, P < 0.001), oblique (4.5 +/- 0.4 vs. 2.8 +/- 0.4%/day, P < 0.05), and soleus (8.8 +/- 0.7 vs. 6.4 +/- 0.3%/day, P < 0.01) and tended to be higher than saline control values in heart (10.9 +/- 0.9 vs. 8.8 +/- 0.7%/day, P = 0.08). Amino acid replacement prevented plasma concentrations from falling and also blunted the decline in plasma insulin (22 +/- 5%, P < 0.01 vs. IGF-I alone). When IGF-I and insulin replacement were given, protein synthesis was increased in heart (13.0 +/- 0.6%/day), gastrocnemius (4.7 +/- 0.4%/day), and oblique (4.5 +/- 0.4%/day) (P < 0.001 for each, compared with saline). We conclude that the action of IGF-I to acutely stimulate muscle protein synthesis in the awake rat is limited by the fall in circulating insulin and/or amino acid concentrations that accompanies IGF-I infusion in vivo and is prevented by co-infusion of insulin or amino acids.


1985 ◽  
Vol 228 (3) ◽  
pp. 575-581 ◽  
Author(s):  
V R Preedy ◽  
P J Garlick

Infusion of glucagon (0.5 mg/h per 100 g body wt.) into fed rats for 6 h inhibited protein synthesis in skeletal muscle, but not in heart. The order of sensitivity of three muscles was plantaris greater than gastrocnemius greater than soleus. Treatment with glucagon for periods of 1 h or less had no effect. Liver protein synthesis was inhibited by glucagon treatment for 10 min, but stimulated after 6 h. The effect of glucagon on muscle was not secondary to impaired food absorption or to depletion of amino acids by increased gluconeogenesis, since the inhibition of protein synthesis was observed in postabsorptive and amino acid-infused rats. The failure of glucagon to inhibit muscle protein synthesis after 1 h may have been caused by the increase in plasma insulin that occurred at this time, since an inhibition was detected in insulin-treated diabetic rats. The lowest infusion rate that gave a significant decrease in muscle protein synthesis was 6 micrograms/h per 100 g body wt., despite a small increase in plasma insulin. This gave plasma glucagon concentrations in the high pathophysiological range, suggesting that glucagon may be significant in the pathogenesis of muscle wasting in metabolic stresses such as diabetes and starvation.


2016 ◽  
Vol 311 (4) ◽  
pp. E671-E677 ◽  
Author(s):  
Sarah Everman ◽  
Christian Meyer ◽  
Lee Tran ◽  
Nyssa Hoffman ◽  
Chad C. Carroll ◽  
...  

Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change ( P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased ( P < 0.01) whole body phenylalanine rate of appearance (μmol·kg−1·min−1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments ( P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.


1976 ◽  
Vol 230 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
TP Stein ◽  
JC Oram-Smith ◽  
MJ Leskiw ◽  
HW Wallace ◽  
LC Long ◽  
...  

The effect of a deficiency of calories and/or nitrogen on protein metabolism in the rat was investigated. During the 5 days of the study, the rats received all nutrients except water via intravenous hyperalimentation. Four diets were used: I) 1.25 g amino acids, 12.5 g glucose/day; II) 1.25 g amino acids/day; III) 1.25 g glucose/day; and IV) 12.5 glucose/day. The rate of protein synthesis in heart, lung, muscle, kidney, and liver was estimated by a modification of the technique of Garlick et al. (The diurnal response of muscles and liver protein synthesis in vivo in meal-fed rats. Biochem. J. 136: 935-945, 1973) except that [15N]glycine was used as the tracer. Heart and lung protein synthesis was depressed by both caloric and nitrogen restriction. Muscle protein synthesis was only significantly affected by omission of calories from the diet. Kidney nitrogen content increased with the amino acid diets and decreased with the nitrogen-deficient diets. The major response of the liver to a dietary deficiency was to lose nitrogen via an increase in the rate of liver protein catabolism.


Sign in / Sign up

Export Citation Format

Share Document