scholarly journals Effect of pH on malonyl-CoA inhibition of carnitine palmitoyltransferase I

1983 ◽  
Vol 212 (2) ◽  
pp. 521-524 ◽  
Author(s):  
T W Stephens ◽  
G A Cook ◽  
R A Harris

Malonyl-CoA inhibition of carnitine palmitoyltransferase I was found to be very pH-dependent. Malonyl-CoA concentrations causing 50% inhibition (I50) at pH 6.0, 6.5, 7.0, 7.5 and 8.0 were 0.04, 1, 9, 40 and 200 microM respectively. It is suggested that a lowering of intracellular pH, such as might occur in ketoacidosis, may attenuate hepatic fatty acid oxidation by increasing malonyl-CoA sensitivity of carnitine palmitoyltransferase I.

1990 ◽  
Vol 269 (2) ◽  
pp. 409-415 ◽  
Author(s):  
C Prip-Buus ◽  
J P Pegorier ◽  
P H Duee ◽  
C Kohl ◽  
J Girard

The temporal changes in oleate oxidation, lipogenesis, malonyl-CoA concentration and sensitivity of carnitine palmitoyltransferase I (CPT 1) to malonyl-CoA inhibition were studied in isolated rabbit hepatocytes and mitochondria as a function of time after birth of the animal or time in culture after exposure to glucagon, cyclic AMP or insulin. (1) Oleate oxidation was very low during the first 6 h after birth, whereas lipogenesis rate and malonyl-CoA concentration decreased rapidly during this period to reach levels as low as those found in 24-h-old newborns that show active oleate oxidation. (2) The changes in the activity of CPT I and the IC50 (concn. causing 50% inhibition) for malonyl-CoA paralleled those of oleate oxidation. (3) In cultured fetal hepatocytes, the addition of glucagon or cyclic AMP reproduced the changes that occur spontaneously after birth. A 12 h exposure to glucagon or cyclic AMP was sufficient to inhibit lipogenesis totally and to cause a decrease in malonyl-CoA concentration, but a 24 h exposure was required to induce oleate oxidation. (4) The induction of oleate oxidation by glucagon or cyclic AMP is triggered by the fall in the malonyl-CoA sensitivity of CPT I. (5) In cultured hepatocytes from 24 h-old newborns, the addition of insulin inhibits no more than 30% of the high oleate oxidation, whereas it stimulates lipogenesis and increases malonyl-CoA concentration by 4-fold more than in fetal cells (no oleate oxidation). This poor effect of insulin on oleate oxidation seems to be due to the inability of the hormone to increase the sensitivity of CPT I sufficiently. Altogether, these results suggest that the malonyl-CoA sensitivity of CPT I is the major site of regulation during the induction of fatty acid oxidation in the fetal rabbit liver.


1985 ◽  
Vol 227 (2) ◽  
pp. 651-660 ◽  
Author(s):  
T W Stephens ◽  
A J Higgins ◽  
G A Cook ◽  
R A Harris

Oxfenicine [S-2-(4-hydroxyphenyl)glycine] is transaminated in heart and liver to 4-hydroxyphenylglyoxylate, an inhibitor of fatty acid oxidation shown in this study to act at the level of carnitine palmitoyltransferase I (EC 2.3.1.21). Oxfenicine was an effective inhibitor of fatty acid oxidation in heart, but not in liver. Tissue specificity of oxfenicine inhibition of fatty acid oxidation was due to greater oxfenicine transaminase activity in heart and to greater sensitivity of heart carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate [I50 (concentration giving 50% inhibition) of 11 and 510 microM for the enzymes of heart and liver mitochondria, respectively]. Branched-chain-amino-acid aminotransferase (isoenzyme I, EC 2.6.1.42) was responsible for the transamination of oxfenicine in heart. A positive correlation was found between the capacity of various tissues to transaminate oxfenicine and the known content of branched-chain-amino-acid aminotransferase in these tissues. Out of three observed liver oxfenicine aminotransferase activities, one may correspond to asparagine aminotransferase, but the major activity could not be identified by partial purification and characterization. As reported previously for malonyl-CoA inhibition of carnitine palmitoyltransferase I, 4-hydroxyphenylglyoxylate inhibition of this enzyme was found to be very pH-dependent. In striking contrast with the kinetics of malonyl-CoA inhibition, 4-hydroxyphenylglyoxylate inhibition was not affected by oleoyl-CoA concentration, but was partially reversed by increasing carnitine concentrations.


1995 ◽  
Vol 311 (3) ◽  
pp. 853-860 ◽  
Author(s):  
M Guzmán ◽  
C Bijleveld ◽  
M J H Geelen

Periportal and perivenous hepatocytes were isolated from rats subjected to different treatments that induce (starvation, cold exposure) or depress (refeeding after starvation) hepatic fatty acid oxidation. These experiments were designed to determine factors that may be involved in creating and maintaining the asymmetrical distribution of this metabolic pathway in the acinus of the liver. The uneven distribution of mitochondrial [14C]-palmitate oxidation within the acinus (i) was very flexible and changed markedly with the physiological status of the animal (periportal/perivenous ratio: 1.5, 2.0, 1.0 and 0.4 for fed, starved, refed and cold-exposed animals respectively), (ii) coincided with a similar zonation of carnitine palmitoyltransferase I activity in fed as well as in cold-exposed animals, (iii) was paralleled by a comparable zonation of mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase activity in starved animals, and (iv) was not determined by zonal differences in any of the following parameters: sensitivity of carnitine palmitoyltransferase I to malonyl-CoA, intracellular concentration of malonyl-CoA, fatty acid synthesizing capacity, acetyl-CoA carboxylase activity, fatty acid synthase activity or relative content of the two hepatic acetyl-CoA carboxylase isoforms. Unlike mitochondrial oxidation, peroxisomal [14C]palmitate oxidation was always zonated towards the perivenous zone of the liver irrespective of the physiological status of the animal. The data presented show that changes in the acinar distribution of mitochondrial long-chain fatty acid oxidation involve specific long-term mechanisms under different physiological conditions.


2008 ◽  
Vol 294 (4) ◽  
pp. H1609-H1620 ◽  
Author(s):  
Vijay Sharma ◽  
Pavan Dhillon ◽  
Richard Wambolt ◽  
Hannah Parsons ◽  
Roger Brownsey ◽  
...  

The effects of diabetes on heart function may be initiated or compounded by the exaggerated reliance of the diabetic heart on fatty acids and ketones as metabolic fuels. β-Blocking agents such as metoprolol have been proposed to inhibit fatty acid oxidation. We hypothesized that metoprolol would improve cardiac function by inhibiting fatty acid oxidation and promoting a compensatory increase in glucose utilization. We measured ex vivo cardiac function and substrate utilization after chronic metoprolol treatment and acute metoprolol perfusion. Chronic metoprolol treatment attenuated the development of cardiac dysfunction in streptozotocin (STZ)-diabetic rats. After chronic treatment with metoprolol, palmitate oxidation was increased in control hearts but decreased in diabetic hearts without affecting myocardial energetics. Acute treatment with metoprolol during heart perfusions led to reduced rates of palmitate oxidation, stimulation of glucose oxidation, and increased tissue ATP levels. Metoprolol lowered malonyl-CoA levels in control hearts only, but no changes in acetyl-CoA carboxylase phosphorylation or AMP-activated protein kinase activity were observed. Both acute metoprolol perfusion and chronic in vivo metoprolol treatment led to decreased maximum activity and decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Metoprolol also increased sarco(endo)plasmic reticulum Ca2+-ATPase expression and prevented the reexpression of atrial natriuretic peptide in diabetic hearts. These data demonstrate that metoprolol ameliorates diabetic cardiomyopathy and inhibits fatty acid oxidation in streptozotocin-induced diabetes. Since malonyl-CoA levels are not increased, the reduction in total carnitine palmitoyltransferase I activity is the most likely factor to explain the decrease in fatty acid oxidation. The metabolism changes occur in parallel with changes in gene expression.


1988 ◽  
Vol 252 (2) ◽  
pp. 409-414 ◽  
Author(s):  
P S Foxworthy ◽  
P I Eacho

Recent studies suggest that the induction of peroxisomal beta-oxidation in rodents may represent an adaptive response to disturbances in hepatic lipid metabolism. The following studies were done to determine the effects of 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl)hexyloxy]acetophenone (4-THA), a tetrazole-substituted acetophenone which induces peroxisomal beta-oxidation in rodent liver, on fatty acid oxidation in vitro. In isolated hepatocytes, 4-THA inhibited the oxidation of oleate (C18:1) and decreased the mitochondrial redox state. The inhibition was more pronounced in the presence of 0.2 mM-oleate than with 0.5 mM, indicating the inhibition may be competitive. 4-THA had no effect on the oxidation of octanoate (C8:0), suggesting that the site of inhibition of oleate oxidation was the carnitine-dependent transport across the mitochondrial inner membrane. In rat liver mitochondria, 4-THA inhibited carnitine palmitoyltransferase I (CPT-I) competitively with respect to the substrate palmitoyl-CoA, increasing the apparent Km from 19 microM to 86 microM. The inhibition of CPT-I by 4-THA was independent of the concentration of the co-substrate carnitine. Whereas fasting attenuated the inhibition of CPT-I by malonyl-CoA, it did not diminish the inhibition by 4-THA. Inhibition of transferase activity by 4-THA and malonyl-CoA was attenuated in mitochondria which had been solubilized with octyl glucoside to expose the latent form of carnitine palmitoyltransferase (CPT-II), suggesting that the inhibition was specific for CPT-I. The specificity was further demonstrated in studies of mitochondrial beta-oxidation in which 4-THA inhibited the oxidation of palmitoyl-CoA but not palmitoylcarnitine. The results demonstrate that 4-THA inhibits fatty acid oxidation in rat liver in vitro at the site of transport across the mitochondrial inner membrane, CPT-I. Whether this disruption in mitochondrial oxidation is causally related to the induction of peroxisomal beta-oxidation is yet to be determined.


Sign in / Sign up

Export Citation Format

Share Document