hepatic fatty acid
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 32)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Kyle S Cavagnini ◽  
Michael J Wolfgang

Fasting requires tight coordination between the metabolism and transcriptional output of hepatocytes to maintain systemic glucose and lipid homeostasis. Deficits in hepatic fatty acid oxidation result in dramatic fasting-induced hepatocyte lipid accumulation and induction of genes for oxidative metabolism that are largely driven by Pparα. While fatty acid oxidation is required for a rise in acetyl-CoA and subsequent lysine acetylation following a fast, changes in histone acetylation (total, H3K9ac, and H3K27ac) do not require fatty acid oxidation. Active enhancers in fasting mice are enriched for Pparα binding motifs. Genetically-defined inhibition of hepatic fatty acid oxidation results in higher levels of chromatin accessibility as well as elevated enhancer priming and acetylation proximal to Pparα sites largely associated with genes in lipid metabolism. Also, greater number of Pparα-associated H3K27ac signal changes occur at active enhancers compared to promoters, suggesting a mechanism for Pparα to tune target expression levels at pre-primed sites. Overall, these data show the requirement for Pparα activation in maintaining transcriptionally permissive hepatic genomic architecture particularly when fatty acid oxidation is limiting.


2021 ◽  
pp. 101275
Author(s):  
Marina Serrano-Maciá ◽  
Jorge Simón ◽  
Maria J. González-Rellan ◽  
Mikel Azkargorta ◽  
Naroa Goikoetxea-Usandizaga ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1037
Author(s):  
Mayssa Albouery ◽  
Alexis Bretin ◽  
Bénédicte Buteau ◽  
Stéphane Grégoire ◽  
Lucy Martine ◽  
...  

Diet shapes the gut microbiota which impacts hepatic lipid metabolism. Modifications in liver fat content are associated with metabolic disorders. We investigated the extent of dietary fat and fiber-induced alterations in the composition of gut microbiota and hepatic fatty acids (FAs). Mice were fed a purified low-fat diet (LFD) or high-fat diet (HFD) containing non-soluble fiber cellulose or soluble fiber inulin. HFD induced hepatic decreases in the amounts of C14:0, C16:1n-7, C18:1n-7 and increases in the amounts of C17:0, C20:0, C16:1n-9, C22:5n-3, C20:2n-6, C20:3n-6, and C22:4n-6. When incorporated in a LFD, inulin poorly affected the profile of FAs. However, when incorporated in a HFD, it (i) specifically led to an increase in the amounts of hepatic C18:0, C22:0, total polyunsaturated FAs (PUFAs), total n-6 PUFAs, C18:3n-3, and C18:2n-6, (ii) exacerbated the HFD-induced increase in the amount of C17:0, and (iii) prevented the HFD-induced increases in C16:1n-9 and C20:3n-6. Importantly, the expression/activity of some elongases and desaturases, as well as the gut microbiota composition, were impacted by the dietary fat and fiber content. To conclude, inulin modulated gut microbiota and hepatic fatty acid composition, and further investigations will determine whether a causal relationship exists between these two parameters.


2021 ◽  
Vol 22 (4) ◽  
pp. 2014
Author(s):  
Yuka Kurosaka ◽  
Shuichi Machida ◽  
Yoko Shiroya ◽  
Hideki Yamauchi ◽  
Kumiko Minato

Weight control based on dietary restriction (DR) alone can cause lipid metabolic failure and progression to fatty liver. This study aimed to investigate the effect of exercise on preventing DR-induced hepatic fat accumulation in Zucker fatty (ZF) rats by focusing on the relationship between adipose tissue lipolysis and hepatic fat uptake. Six-week-old male ZF rats were randomly assigned to obese, DR, or DR with exercise (DR + Ex) groups. The DR and DR + Ex groups were fed a restricted diet, with the latter also undergoing voluntary exercise. After 6 weeks, hepatic fat accumulation was observed in the DR group, whereas intrahepatic fat was markedly reduced in the DR + Ex group. Compared with the obese (Ob) group, the DR group exhibited 2.09-fold expression of hepatic fatty acid translocase (FAT)/CD36 proteins (p < 0.01) and 0.14-fold expression of hepatic fatty acid-binding protein (FABP)1 (p < 0.01). There were no significant differences between the DR + Ex group and the Ob group. FAT/CD36 and hepatic triglyceride (TG) expression levels were strongly positively correlated (r = 0.81, p < 0.001), whereas there was a strong negative correlation between FABP1 and hepatic TG expression levels (r = −0.65, p < 0.001). Our results suggest that hepatic fat accumulation induced by DR in ZF rats might be prevented through exercise-induced modifications in FAT/CD36 and FABP1 expression.


Author(s):  
Alexandra Lasch ◽  
Philip Marx-Stoelting ◽  
Albert Braeuning ◽  
Dajana Lichtenstein

AbstractThe liver is constantly exposed to mixtures of hepatotoxic compounds, such as food contaminants and pesticides. Dose addition is regularly assumed for mixtures in risk assessment, which however might not be sufficiently protective in case of synergistic effects. Especially the prediction of combination effects of substances which do not share a common adverse outcome (AO) might be problematic. In this study, the focus was on the endpoint liver triglyceride accumulation in vitro, an indicator of hepatic fatty acid changes. The hepatotoxic compounds difenoconazole, propiconazole and tebuconazole were chosen which cause hepatic fatty acid changes in vivo, whereas fludioxonil was chosen as a hepatotoxic substance not causing fatty acid changes. Triglyceride accumulation was analyzed for combinations of steatotic and non-steatotic pesticides in human HepaRG hepatocarcinoma cells. Investigations revealed a potentiation of triglyceride accumulation by mixtures of the steatotic compounds with the non-steatotic fludioxonil, as compared to the single compounds. Mathematical modeling of combination effects indicated more than additive effects for the tested combinations if the method by Chou was applied, and a decrease in EC50 values of the steatotic compounds when applied in mixtures. Use of an adverse outcome pathway (AOP)-driven testing strategy for liver steatosis showed interactions of the test compounds with the nuclear receptors AHR, CAR and PXR, as well as a downregulation of ACOX2. An ACOX2-dependent mechanism underlying the observed mixture effect could not be verified using a siRNA approach. By contrast, a toxicokinetic interaction was identified including an inhibition of the metabolic enzyme CYP3A4 by fludioxonil and a decreased metabolic conversion of the CYP3A4 substrate difenoconazole when used in mixture experiments. In conclusion, an interaction by a steatotic and a non-steatotic compound at the toxicokinetic level on the endpoint triglyceride accumulation in vitro was described.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 92
Author(s):  
Hao Xu ◽  
Yu Jiang ◽  
Xiao-Min Miao ◽  
Yi-Xi Tao ◽  
Lang Xie ◽  
...  

Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.


2020 ◽  
Vol 32 (6) ◽  
pp. 1012-1027.e7
Author(s):  
Jin Young Huh ◽  
Shannon M. Reilly ◽  
Mohammad Abu-Odeh ◽  
Anne N. Murphy ◽  
Sushil K. Mahata ◽  
...  

2020 ◽  
Author(s):  
Ada Admin ◽  
Zhuo Mao ◽  
Mingji Feng ◽  
Zhuoran Li ◽  
Minsi Zhou ◽  
...  

ETV5 is an ETS transcription factor which has been associated with obesity in genomic association studies. However, little is known about the role of ETV5 in hepatic lipid metabolism and non-alcoholic fatty liver disease (NAFLD). In the present study, we found that ETV5 protein expression was increased in diet- and genetic-induced steatotic liver. ETV5 responded to the nutrient status in an mTORC1 dependent manner and in turn regulated mTORC1 activity. Both viral-mediated and genetic depletion of ETV5 in mice led to increased lipid accumulation in the liver. RNA sequencing analysis revealed that PPAR signaling and fatty acid degradation/metabolism pathways were significantly downregulated in ETV5 deficient hepatocytes <i>in vivo</i> and <i>in vitro. </i>Mechanistically, ETV5 could bind to the PPRE region of PPAR downstream genes and enhance its transactivity. Collectively, our study identifies ETV5 as a novel transcription factor for the regulation of hepatic fatty acid metabolism which is required for the optimal β oxidation process. ETV5 may provide a therapeutic target for the treatment of hepatic steatosis.<br>


Sign in / Sign up

Export Citation Format

Share Document