scholarly journals Stimulation of the respiration rate of rat liver mitochondria by sub-micromolar concentrations of extramitochondrial Ca2+

1987 ◽  
Vol 245 (1) ◽  
pp. 217-222 ◽  
Author(s):  
J D Johnston ◽  
M D Brand

1. The respiration rate of rat liver mitochondria was stimulated by up to 70% when the extramitochondrial Ca2+ concentration was raised from 103 to 820 nM. This occurred when pyruvate, 2-oxoglutarate, or threo-(Ds)-isocitrate was employed as substrate, but not when succinate was used. 2. Ruthenium Red prevented the stimulation of mitochondrial respiration by extramitochondrial Ca2+, showing that the effect required Ca2+ uptake into the mitochondrial matrix. 3. Starvation of rats for 48 h abolished the stimulation of mitochondrial respiration by extramitochondrial Ca2+ when pyruvate was used as substrate, but did not affect the stimulation of 2-oxoglutarate oxidation by extramitochondrial Ca2+. 4. Our findings are in accord with proposals that oxidative metabolism in liver mitochondria may be stimulated by Ca2+ activation of intramitochondrial dehydrogenases.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1673-1673
Author(s):  
Sruti Shiva ◽  
Zhi Huang ◽  
Lorna A. Ringwood ◽  
David J. Lefer ◽  
Mark T. Gladwin

Abstract We recently described a role for the circulating anion nitrite as a hypoxic vasodilator, mediated by reduction of nitrite to nitric oxide (NO) by a reaction with deoxyhemoglobin (deoxyHb) (Cosby et al, Nat Med, 2003). The rate of deoxyHb dependent reduction of nitrite is regulated by the structural transition of deoxyHb from T (deoxy) to R (oxy) state, with maximal NO production (and vasodilatory activity) occurring at the P50 of Hb (Huang et al, J Clin Invest, 2005). New studies from our laboratory suggest that this paradigm may extend beyond Hb to other heme proteins, and that hypoxia dependent production of NO from nitrite mediates hypoxic responses beyond vasodilation. Particularly, in a murine model of ischemia/reperfusion (I/R), low doses of nitrite (48nmol) have been shown to protect cardiac and hepatic tissue against reperfusion injury (Duranski et al, J Clin Invest, 2005). One major characteristic of I/R injury is mitochondrial damage, resulting in decreased respiratory rate, decreased ATP production and increased reactive oxygen species production. Since NO is a known reversible inhibitor of mitochondrial respiration and the rate of deoxymyoglobin (deoxyMb) dependent reduction of nitrite to NO is approximately 50-fold higher than the deoxyHb-nitrite reaction, we sought to determine whether the reaction between deoxyMb and nitrite in tissues, where concentrations of Mb and nitrite can reach micromolar levels, could produce bioavailable NO to regulate mitochondrial respiration, and whether this could protect mitochondria against I/R injury. Here we show evidence that nitrite has both acute and chronic effects on mitochondrial respiration. In experiments using respiring isolated rat liver mitochondria, the addition of Mb (25μM) and nitrite (100μM) results in the inhibition of respiratory rate only at oxygen tensions below 2.7mmHg (the P50of Mb), while nitrite or Mb alone have no significant effect on respiration. This acute effect is consistent with spectrophotometric data showing that the rate of reduction of nitrite (100μM) by deoxyMb (25μM) to NO is 9 nM/sec, suggesting that within 20 seconds enough NO would be produced to inhibit respiration (IC50=100nM). In an in vitro model of anoxia-induced mitochondrial injury, respiration rates of isolated rat liver mitochondria were measured before and after the organelles were subjected to anoxia for 30 minutes. In untreated control mitochondria, respiration rate decreased by 50% after the anoxia, consistent with ischemic injury, while mitochondria treated with nitrite (10μM) during anoxia had only a 25% decrease in respiratory rate. Preservation of post-anoxic respiratory rate was dependent on nitrite concentration (5–50μM,) with the maximal effect occurring at 10μM, a concentration coinciding with the tissue levels of nitrite at the nitrite dose which conferred maximal protection in previous animal models of I/R. Remarkably, administration of nitrite (480nmol) to rats 24 hours before the isolation of mitochondria was also shown to prevent the anoxia-induced decrease in respiration rate. In summary, these data suggest that nitrite bioactivation in tissue, both by Mb-dependent and independent mechanisms, modulates mitochondrial respiration and stress response. These data support a more global role for nitrite as a biochemical HIF-1 alpha with pleiotropic effects on both vascular and tissue response to hypoxia.


1992 ◽  
Vol 283 (2) ◽  
pp. 435-439 ◽  
Author(s):  
M Jois ◽  
H S Ewart ◽  
J T Brosnan

1. The catabolism of glycine was studied in isolated rat liver mitochondria by measuring release of 14CO2 from [1-14C]-glycine. Incubation of mitochondria in a medium containing 0.5 microM free Ca2+ resulted in an 8-fold increase in the rate of degradation of glycine. Intraperitoneal injection of glucagon (33 or 100 micrograms/100 g body wt.) 25 min before killing of rats also resulted in a 3-fold or 10-fold (depending on dosage) increase in the rate of catabolism of glycine. 2. Both the stimulation by free Ca2+ and that by injection of glucagon in vivo were dependent on phosphate in the incubation medium. This requirement for phosphate was specific, as replacement of phosphate by other permeant anions such as thiocyanate and acetate did not permit the stimulation. The phosphate-dependent stimulation of glycine catabolism by Ca2+ was also evident when mitochondria were incubated in the absence of K+. 3. Mitochondria isolated from rats previously injected with glucagon showed elevated rates of degradation of glycine even in the presence of rotenone, provided that regeneration of NAD+ was affected by providing acetoacetate. 4. Hypo-osmolarity of the medium markedly stimulated the rate of degradation of glycine by mitochondria. Although hypo-osmolarity-induced stimulation of glycine degradation was accompanied by parallel changes in mitochondrial matrix volume, no measurable changes in matrix volume were observed in mitochondria stimulated either by free Ca2+ (0.5 microM) or by injection of glucagon in vivo. Furthermore, Ca2+ stimulated glycine decarboxylation in mitochondria exposed to either hyper-osmolar (410 mosmol) or hypo-osmolar (210 mosmol) conditions. Although hyper-osmolarity decreased and hypo-osmolarity increased matrix volume, stimulation of glycine degradation by Ca2+ was not associated with any further changes in matrix volume. 5. These data demonstrate that the regulation of hepatic glycine oxidation by glucagon and by free Ca2+ is largely independent of changes in mitochondrial matrix volume.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 923-930 ◽  
Author(s):  
RA Gams ◽  
EM Ryel ◽  
F Ostroy

Abstract Protein-mediated B12 uptake by isolated rat liver mitochondria has been shown to be enhanced by plasma transcobalamin (TC-II) but not by salivary R binder in vitro. The process is enhanced by calcium and depends on active mitochondrial respiration. Following uptake, cyanocobalamin is converted to adenosyl and methylcobalamins and released from the mitochondria. TC-II appears to be required for both cellular and mitochondrial uptake of vitamin B12.


1968 ◽  
Vol 109 (5) ◽  
pp. 921-928 ◽  
Author(s):  
J. M. Haslam ◽  
D. E. Griffiths

1. The rates of translocation of oxaloacetate and l-malate into rat liver mitochondria were measured by a direct spectrophotometric assay. 2. Penetration obeyed Michaelis–Menten kinetics, and apparent Km values were 40μm for oxaloacetate and 0·13mm for l-malate. 3. Arrhenius plots of the temperature-dependence of rates of penetration gave activation energies of +10kcal./mole for oxaloacetate and +8kcal./mole for l-malate. 4. The translocation of both oxaloacetate and l-malate was competitively inhibited by d-malate, succinate, malonate, meso-tartrate, maleate and citraconate. The Ki values of these inhibitors were similar for the penetration of both oxaloacetate and l-malate. 5. Rates of penetration were stimulated by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate under aerobic conditions or by ATP under anaerobic conditions. 6. The energy-dependent stimulation of translocation was abolished by uncouplers of oxidative phosphorylation. Oligomycin A, aurovertin, octyl-guanidine and atractyloside prevented the stimulation by ATP, but did not inhibit the stimulation by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate. 7. Mitochondria prepared in the presence of ethylene-dioxybis(ethyleneamino)tetra-acetic acid did not exhibit the energy-dependent translocation, but this could be restored by the addition of 50μm-calcium chloride. 8. Valinomycin or gramicidin plus potassium chloride enhanced the energy-dependent translocation of oxaloacetate and l-malate. 9. Addition of oxaloacetate stimulated the adenosine triphosphatase activity of the mitochondria, and the ratio of ‘extra’ oxaloacetate translocation to ‘extra’ adenosine triphosphatase activity was 1·6:1. 10. Possible mechanisms for the energy-dependent entry of oxaloacetate and l-malate into mitochondria are discussed in relation to the above results.


1983 ◽  
Vol 212 (3) ◽  
pp. 773-782 ◽  
Author(s):  
B P Hughes ◽  
J H Exton

The effects of micromolar concentrations of Mn2+ on the rat liver mitochondrial Ca2+ cycle were investigated. It was found that the addition of Mn2+ to mitochondria which were cycling 45Ca2+ led to a rapid dose dependent decrease in the concentration of extramitochondrial 45Ca2+ of about 1 nmol/mg of protein. The effect was complete within 30 s, was half maximal with 10 microM Mn2+ and was observed in the presence of 3 mM Mg2+ and 1 mM ATP. It occurred over a broad range of incubation temperatures, pH and mitochondrial Ca2+ loads. It was not observed when either Mg2+ or phosphate was absent from the incubation medium, or in the presence of Ruthenium Red. These findings indicate that micromolar concentrations of Mn2+ stimulate the uptake of Ca2+ by rat liver mitochondria, and provide evidence for an interaction between Mg2+ and Mn2+ in the control of mitochondrial Ca2+ cycling.


Sign in / Sign up

Export Citation Format

Share Document