scholarly journals Isolation and partial characterization of antibody- and globin-enriched complexes from membranes of dense human erythrocytes

1991 ◽  
Vol 278 (1) ◽  
pp. 57-62 ◽  
Author(s):  
R Kannan ◽  
J Yuan ◽  
P S Low

In previous studies we have described a process whereby an erythrocyte in biochemical distress can initiate its own removal by macrophages of the reticuloendothelial system. This process involves the clustering of the integral membrane protein band 3 by denatured haemoglobin and the subsequent recognition of the exofacial poles of clustered band 3 and associated proteins by autologous antibodies. To determine whether this clearance pathway might mediate normal cell turnover, the fraction of normal erythrocytes containing the 0.5% densest cells, which are known to be destined for immediate removal, was isolated and characterized biochemically. This densest fraction was found to contain 6 times more membrane-bound globin (haemichromes) and 10 times more surface-bound autologous IgG than the other fractions containing cells of lower density. To determine whether the autologous IgG was physically associated with the haemichrome-stabilized membrane protein clusters, a procedure was developed for isolation and characterization of the microscopic aggregates. The isolated aggregates were found to contain a disulphide-cross-linked mixture of several membrane proteins, predominantly haemichromes, spectrin and band 3. Although the aggregates constituted only 0.09% of the total membrane protein, they still contained approximately 55% of the total cell-surface IgG. Since in control studies anti-(blood group A) antibodies, which are distributed randomly over the surface of type A cells, could not be recovered in the aggregate, we conclude that the autologous cell-surface IgGs were physically associated with the membrane protein clusters when they were co-isolated with them in our procedure. Thus the 640-fold enrichment of autologous IgG in the aggregates compared with regions of the membrane devoid of tightly clustered protein suggests that sites of integral protein clustering either are non-specifically sticky to IgG or are viewed as foreign or ‘non-self’ by the immune system and aggressively opsonized with IgG.

Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3146-3152 ◽  
Author(s):  
F Turrini ◽  
F Mannu ◽  
P Arese ◽  
J Yuan ◽  
PS Low

Abstract In earlier studies we presented evidence that the clustering of the integral membrane protein, band 3, can serve as a signal for immune recognition and clearance of senescent or abnormal erythrocytes from circulation. In this study, we have exploited the capacity of 1 mmol/L Zn+2 to mildly and reversibly cluster band 3 in situ to characterize the nature of the autologous antibodies specific for the clustered state. We report that the autologous IgG elute almost exclusively in a high molecular weight complex with other proteins when C12E8 detergent extracts of Zn clustered membranes are chromatographed on Sepharose CL- 6B. The complex was also seen to contain complement component C3, hemoglobin, and a cross-linked oligomer of band 3. Autologous IgG and complement were virtually absent from all other fractions. When the band 3 clusters were disaggregated by removal of the Zn+2, the autologous IgG eluted from the erythrocyte surface. Collection of this IgG and use of the antibody in immunoblots of erythrocyte membranes showed that the band 3 monomer, dimer, and oligomers were the major antigenic species. Except for a minor unidentified band at approximately 78,000 d, no other proteins were significantly stained. Curiously, band 3 showed an uneven staining pattern, with oligomers and the leading edge of the monomers appearing more intensely than expected from their abundances in the Coomassie blue-stained gels. Typing of the same autologous IgG with monoclonal antibodies specific for the different subclasses of IgG showed the presence of only subtypes 2 and 3. Taken together, these data suggest that a specific population of autologous IgG recognizes sites of integral membrane protein clustering (a common lesion in senescent and abnormal red blood cells) and that the antigen within these clusters involves an aggregated state of band 3.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3146-3152 ◽  
Author(s):  
F Turrini ◽  
F Mannu ◽  
P Arese ◽  
J Yuan ◽  
PS Low

In earlier studies we presented evidence that the clustering of the integral membrane protein, band 3, can serve as a signal for immune recognition and clearance of senescent or abnormal erythrocytes from circulation. In this study, we have exploited the capacity of 1 mmol/L Zn+2 to mildly and reversibly cluster band 3 in situ to characterize the nature of the autologous antibodies specific for the clustered state. We report that the autologous IgG elute almost exclusively in a high molecular weight complex with other proteins when C12E8 detergent extracts of Zn clustered membranes are chromatographed on Sepharose CL- 6B. The complex was also seen to contain complement component C3, hemoglobin, and a cross-linked oligomer of band 3. Autologous IgG and complement were virtually absent from all other fractions. When the band 3 clusters were disaggregated by removal of the Zn+2, the autologous IgG eluted from the erythrocyte surface. Collection of this IgG and use of the antibody in immunoblots of erythrocyte membranes showed that the band 3 monomer, dimer, and oligomers were the major antigenic species. Except for a minor unidentified band at approximately 78,000 d, no other proteins were significantly stained. Curiously, band 3 showed an uneven staining pattern, with oligomers and the leading edge of the monomers appearing more intensely than expected from their abundances in the Coomassie blue-stained gels. Typing of the same autologous IgG with monoclonal antibodies specific for the different subclasses of IgG showed the presence of only subtypes 2 and 3. Taken together, these data suggest that a specific population of autologous IgG recognizes sites of integral membrane protein clustering (a common lesion in senescent and abnormal red blood cells) and that the antigen within these clusters involves an aggregated state of band 3.


Sign in / Sign up

Export Citation Format

Share Document