protein clusters
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 37)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Hiroaki Ohishi ◽  
Seiru Shimada ◽  
Satoshi Uchino ◽  
Jieru Li ◽  
Yuko Sato ◽  
...  

Transcription is a dynamic process that stochastically switches between the ON and OFF states. To detect the dynamic relationship among protein clusters of RNA polymerase II (RNAPII) and coactivators, gene loci, and transcriptional activity, we inserted an MS2 repeat, a TetO repeat, and inteins with a selection marker just downstream of the transcription start site (TSS). By optimizing the individual elements, we have developed the Spliced TetO REpeAt, MS2 repeat, and INtein sandwiched reporter Gene tag (STREAMING-tag) system. Clusters of RNAPII and BRD4 were observed proximally to the TSS of Nanog when the gene was transcribed in mouse embryonic stem cells. In contrast, clusters of MED19 and MED22 Mediator subunits were constitutively located near the TSS. Thus, the STREAMING-tag system revealed the spatiotemporal relationships between transcriptional activity and protein clusters near the gene. This powerful tool is useful for quantitatively understanding dynamic transcriptional regulation in living cells.


Author(s):  
Cynthia Maria Chibani ◽  
Alexander Mahnert ◽  
Guillaume Borrel ◽  
Alexandre Almeida ◽  
Almut Werner ◽  
...  

AbstractThe human gut microbiome plays an important role in health, but its archaeal diversity remains largely unexplored. In the present study, we report the analysis of 1,167 nonredundant archaeal genomes (608 high-quality genomes) recovered from human gastrointestinal tract, sampled across 24 countries and rural and urban populations. We identified previously undescribed taxa including 3 genera, 15 species and 52 strains. Based on distinct genomic features, we justify the split of the Methanobrevibacter smithii clade into two separate species, with one represented by the previously undescribed ‘CandidatusMethanobrevibacter intestini’. Patterns derived from 28,581 protein clusters showed significant associations with sociodemographic characteristics such as age groups and lifestyle. We additionally show that archaea are characterized by specific genomic and functional adaptations to the host and carry a complex virome. Our work expands our current understanding of the human archaeome and provides a large genome catalogue for future analyses to decipher its impact on human physiology.


Science ◽  
2021 ◽  
Vol 373 (6560) ◽  
pp. 1218-1224 ◽  
Author(s):  
Andrew W. Folkmann ◽  
Andrea Putnam ◽  
Chiu Fan Lee ◽  
Geraldine Seydoux
Keyword(s):  

2021 ◽  
Author(s):  
Cole Zmurchok ◽  
William R. Holmes

The clustering of membrane-bound proteins facilitates their transport by cortical actin flow in early Caenorhabditis elegans embryo cell polarity. PAR-3 clustering is critical for this process, yet the biophysical processes that couple protein clusters to cortical flow remain unknown. We develop a discrete, stochastic agent-based model of protein clustering and test four hypothetical models for how clusters may interact with the flow. Results show that the canonical way to assess transport characteristics from single particle tracking data used thus far in this area, the Péclet number, is insufficient to distinguish these hypotheses and that all models can account for transport characteristics quantified by this measure. However, using this model, we demonstrate that these different cluster-cortex interactions may be distinguished using a different metric, namely, the scalar projection of cluster displacement on to the flow displacement vector. Our results thus provide a testable way to use existing single particle tracking data to test how endogenous protein clusters may interact with the cortical flow to localize during polarity establishment. To facilitate this investigation, we also develop both improved simulation and semi-analytic methodologies to quantify motion summary statistics (e.g., Péclet number and scalar projection) for these stochastic models as a function of biophysical parameters.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amanda Ap. Seribelli ◽  
Patrick da Silva ◽  
Marcelo Ferreira da Cruz ◽  
Fernanda de Almeida ◽  
Miliane R. Frazão ◽  
...  

Abstract Background Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. Results The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. Conclusions The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs’ results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Mattia Marenda ◽  
Elena Lazarova ◽  
Sebastian van de Linde ◽  
Nick Gilbert ◽  
Davide Michieletto

Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm, (super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasma membrane. We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and explore complex SMLM data and extract functionally relevant information.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract Background More accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum. Results The improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. Conclusions The novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


2021 ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract Background More accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum . Results The improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. Conclusions The novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


Sign in / Sign up

Export Citation Format

Share Document