Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants

2001 ◽  
Vol 356 (1) ◽  
pp. 217-222 ◽  
Author(s):  
Ricardo FRANCO ◽  
Alice S. PEREIRA ◽  
Pedro TAVARES ◽  
Arianna MANGRAVITA ◽  
Michael J. BARBER ◽  
...  

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical for the catalytic process by controlling the release of the product.

1997 ◽  
Vol 327 (2) ◽  
pp. 537-544 ◽  
Author(s):  
F. Catherine OLIVER ◽  
Sandeep MODI ◽  
U. William PRIMROSE ◽  
Lu-Yun LIAN ◽  
C. K. Gordon ROBERTS

Oligonucleotide-directed mutagenesis has been used to replace arginine-47 with glutamate in cytochrome P-450 BM3 from Bacillus megaterium and in its haem domain. The mutant has been characterized by sequencing, mass spectrometry, steady-state kinetics and by optical and NMR measurements of substrate binding. The mutant retains significant catalytic activity towards C12-C16 fatty acids, catalysing hydroxylation in the same (ω-1, ω-2, ω-3) positions with kcat/Km values a factor of 14-21 lower. C12-C16 alkyl trimethylammonium compounds are relatively poor substrates for the wild-type enzyme, but are efficiently hydroxylated by the arginine-47 → glutamate mutant at the ω-1, ω-2 and ω-3 positions, with kcat values of up to 19 s-1. Optical spectroscopy shows that the binding of the C14 and C16 alkyl trimethylammonium compounds to the mutant is similar to that of the corresponding fatty acids to the wild-type enzyme. Paramagnetic relaxation measurements show that laurate binds to the ferric state of the mutant in a significantly different position, 1.5 Å closer to the iron, than seen in the wild-type, although this difference is much smaller (~ 0.2 Å) in the ferrous state of the complex. The binding of a substrate having the same charge as residue 47 to the ferric state of the enzyme is roughly ten times weaker than that of a substrate having the opposite charge (and thus is able to make an ion-pair interaction with this residue). The results are discussed in the light of the three-dimensional structure of the enzyme.


2016 ◽  
Vol 72 (2) ◽  
pp. 203-210 ◽  
Author(s):  
T. N. Safonova ◽  
N. N. Mordkovich ◽  
V. P. Veiko ◽  
N. A. Okorokova ◽  
V. A. Manuvera ◽  
...  

Uridine phosphorylase (UP; EC 2.4.2.3), a key enzyme in the pyrimidine-salvage pathway, catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. The structure of the C212S mutant of uridine phosphorylase from the facultatively aerobic Gram-negative γ-proteobacteriumShewanella oneidensisMR-1 (SoUP) was determined at 1.68 Å resolution. A comparison of the structures of the mutant and the wild-type enzyme showed that one dimer in the mutant hexamer differs from all other dimers in the mutant and wild-type SoUP (both in the free form and in complex with uridine). The key difference is the `maximum open' state of one of the subunits comprising this dimer, which has not been observed previously for uridine phosphorylases. Some conformational features of the SoUP dimer that provide access of the substrate into the active site are revealed. The binding of the substrate was shown to require the concerted action of two subunits of the dimer. The changes in the three-dimensional structure induced by the C212S mutation account for the lower affinity of the mutant for inorganic phosphate, while the affinity for uridine remains unchanged.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 267-286 ◽  
Author(s):  
J D Fackenthal ◽  
J A Hutchens ◽  
F R Turner ◽  
E C Raff

Abstract We have determined the lesions in a number of mutant alleles of beta Tub85D, the gene that encodes the testis-specific beta 2-tubulin isoform in Drosophila melanogaster. Mutations responsible for different classes of functional phenotypes are distributed throughout the beta 2-tubulin molecule. There is a telling correlation between the degree of phylogenetic conservation of the altered residues and the number of different microtubule categories disrupted by the lesions. The majority of lesions occur at positions that are evolutionarily highly conserved in all beta-tubulins; these lesions disrupt general functions common to multiple classes of microtubules. However, a single allele B2t6 contains an amino acid substitution within an internal cluster of variable amino acids that has been identified as an isotype-defining domain in vertebrate beta-tubulins. Correspondingly, B2t6 disrupts only a subset of microtubule functions, resulting in misspecification of the morphology of the doublet microtubules of the sperm tail axoneme. We previously demonstrated that beta 3, a developmentally regulated Drosophila beta-tubulin isoform, confers the same restricted morphological phenotype in a dominant way when it is coexpressed in the testis with wild-type beta 2-tubulin. We show here by complementation analysis that beta 3 and the B2t6 product disrupt a common aspect of microtubule assembly. We therefore conclude that the amino acid sequence of the beta 2-tubulin internal variable region is required for generation of correct axoneme morphology but not for general microtubule functions. As we have previously reported, the beta 2-tubulin carboxy terminal isotype-defining domain is required for suprastructural organization of the axoneme. We demonstrate here that the beta 2 variant lacking the carboxy terminus and the B2t6 variant complement each other for mild-to-moderate meiotic defects but do not complement for proper axonemal morphology. Our results are consistent with the hypothesis drawn from comparisons of vertebrate beta-tubulins that the two isotype-defining domains interact in a three-dimensional structure in wild-type beta-tubulins. We propose that the integrity of this structure in the Drosophila testis beta 2-tubulin isoform is required for proper axoneme assembly but not necessarily for general microtubule functions. On the basis of our observations we present a model for regulation of axoneme microtubule morphology as a function of tubulin assembly kinetics.


2015 ◽  
Vol 71 (12) ◽  
pp. 2505-2512 ◽  
Author(s):  
Magdalena Schacherl ◽  
Angelika A. M. Montada ◽  
Elena Brunstein ◽  
Ulrich Baumann

The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins fromHelicobacterandSalmonella. The first crystal structure analysis of a U32 catalytic domain fromMethanopyrus kandleri(genemk0906) reveals a modified (βα)8TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to aStrep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.


Triose phosphate isomerase is a dimeric enzyme of molecular mass 56000 which catalyses the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate. The crystal structure of the enzyme from chicken muscle has been determined at a resolution of 2.5 A, and an independent determination of the structure of the yeast enzyme has just been completed at 3 A resolution. The conformation of the polypeptide chain is essentially identical in the two structures, and consists of an inner cylinder of eight strands of parallel |3-pleated sheet, with mostly helical segments connecting each strand. The active site is a pocket containing glutamic acid 165, which is believed to act as a base in the reaction. Crystallographic studies of the binding of DHAP to both the chicken and the yeast enzymes reveal a common mode of binding and suggest a mechanism for catalysis involving polarization of the substrate carbonyl group.


2021 ◽  
Vol 7 ◽  
Author(s):  
Castrense Savojardo ◽  
Matteo Manfredi ◽  
Pier Luigi Martelli ◽  
Rita Casadio

Solvent accessibility (SASA) is a key feature of proteins for determining their folding and stability. SASA is computed from protein structures with different algorithms, and from protein sequences with machine-learning based approaches trained on solved structures. Here we ask the question as to which extent solvent exposure of residues can be associated to the pathogenicity of the variation. By this, SASA of the wild-type residue acquires a role in the context of functional annotation of protein single-residue variations (SRVs). By mapping variations on a curated database of human protein structures, we found that residues targeted by disease related SRVs are less accessible to solvent than residues involved in polymorphisms. The disease association is not evenly distributed among the different residue types: SRVs targeting glycine, tryptophan, tyrosine, and cysteine are more frequently disease associated than others. For all residues, the proportion of disease related SRVs largely increases when the wild-type residue is buried and decreases when it is exposed. The extent of the increase depends on the residue type. With the aid of an in house developed predictor, based on a deep learning procedure and performing at the state-of-the-art, we are able to confirm the above tendency by analyzing a large data set of residues subjected to variations and occurring in some 12,494 human protein sequences still lacking three-dimensional structure (derived from HUMSAVAR). Our data support the notion that surface accessible area is a distinguished property of residues that undergo variation and that pathogenicity is more frequently associated to the buried property than to the exposed one.


1999 ◽  
Vol 181 (14) ◽  
pp. 4397-4403 ◽  
Author(s):  
Casper Jørgensen ◽  
Gert Dandanell

ABSTRACT In this work, the LysR-type protein XapR has been subjected to a mutational analysis. XapR regulates the expression of xanthosine phosphorylase (XapA), a purine nucleoside phosphorylase inEscherichia coli. In the wild type, full expression of XapA requires both a functional XapR protein and the inducer xanthosine. Here we show that deoxyinosine can also function as an inducer in the wild type, although not to the same extent as xanthosine. We have isolated and characterized in detail the mutants that can be induced by other nucleosides as well as xanthosine. Sequencing of the mutants has revealed that two regions in XapR are important for correct interactions between the inducer and XapR. One region is defined by amino acids 104 and 132, and the other region, containing most of the isolated mutations, is found between amino acids 203 and 210. These regions, when modelled into the three-dimensional structure of CysB from Klebsiella aerogenes, are placed close together and are most probably directly involved in binding the inducer xanthosine.


1999 ◽  
Vol 343 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Claire S. ALLARDYCE ◽  
Paul D. MCDONAGH ◽  
Lu-Yun LIAN ◽  
C. Roland WOLF ◽  
Gordon C. K. ROBERTS

Glutathione S-transferases (GSTs) play a key role in the metabolism of drugs and xenobiotics. To investigate the catalytic mechanism, substrate binding and catalysis by the wild-type and two mutants of GST A1-1 have been studied. Substitution of the ‘essential’ Tyr9 by phenylalanine leads to a marked decrease in the kcat for 1-chloro-2,4-dinitrobenzene (CDNB), but has no affect on kcat for ethacrynic acid. Similarly, removal of the C-terminal helix by truncation of the enzyme at residue 209 leads to a decrease in kcat for CDNB, but an increase in kcat for ethacrynic acid. The binding of a GSH analogue increases the affinity of the wild-type enzyme for CDNB, and increases the rate of the enzyme-catalysed conjugation of this substrate with the small thiols 2-mercaptoethanol and dithiothreitol. This suggests that GSH binding produces a conformational change which is transmitted to the binding site for the hydrophobic substrate, where it alters both the affinity for the substrate and the catalytic-centre activity (‘turnover number‘) for conjugation, perhaps by increasing the proportion of the substrate bound productively. Neither of these two effects of GSH analogues are seen in the C-terminally truncated enzyme, indicating a role for the C-terminal helix in the GSH-induced conformational change.


Sign in / Sign up

Export Citation Format

Share Document