flow experiments
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 97)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Zuyao Xiao ◽  
Audrey Nsamela ◽  
Benjamin Garlan ◽  
Juliane Simmchen

The ability of artificial microswimmers to respond to external stimuli and the mechanistical details of their origins belong to the most disputed challenges in interdisciplinary science. Therein, the creation of chemical gradients is technically challenging, because they quickly level out due to diffusion. Inspired by pivotal stopped flow experiments in chemical kinetics, we show that microfluidics gradient generation combined with a pressure feedback loop for precisely controlling the stop of the flows, can enable us to study mechanistical details of chemotaxis of artificial Janus micromotors, based on a catalytic reaction. We find that these copper Janus particles display a chemotactic motion along the concentration gradient in both, positive and negative direction and we demonstrate the mechanical reaction of the particles to small forces deviations, explaining this behaviour.


2021 ◽  
Vol 118 (52) ◽  
pp. e2105053118
Author(s):  
Jay L. Zweier ◽  
Craig Hemann ◽  
Tapan Kundu ◽  
Mohamed G. Ewees ◽  
Sahar A. Khaleel ◽  
...  

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M−1 ⋅ s−1. Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M−1 ⋅ s−1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb−/− mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


2021 ◽  
Author(s):  
Christopher Daeffler ◽  
Julia Fernandez del Valle ◽  
Jean Elkhoury ◽  
Mohan Panga ◽  
Max Nikolaev ◽  
...  

Abstract Globally, dolomite formations are important reservoirs for oil and gas. Acid stimulation is commonly used to extend the life of carbonate reservoirs, and a good understanding of the fluid performance is essential for effective treatment design. Three acids, hydrochloric acid (HCl), emulsified HCl, and a single-phase retarded acid based on HCl, were assessed for their ability to create wormholes in Silurian dolomite under laboratory conditions using a standard core flow experiment. Select cores were imaged by X-ray computed tomography to visualize the wormhole morphology. Similar experiments in Indiana limestone was used as a control. The core flow experiments showed that the pore volume to break-through (PVbt) values for the retarded acids in Indiana limestone were less sensitive to changes in temperature overall than unmodified HCl. For Silurian dolomite though, the opposite is observed. HCl has uniformly high PVbt values at lower (200 °F) and higher (325 °F). The emulsified acid and the single-phase retarded acid are more efficient than HCl, but the difference is smaller at 325 °F. Core images revealed that all three fluids had some degree of wormhole branching at 200 °F and much less branching at 325 °F. By visual inspection, the single-phase retarded acid has less ramification than HCl and the emulsified acid. Overall, the results show that retarded acids should make effective stimulation fluids for dolomite reservoirs.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1267
Author(s):  
Huw Woodward ◽  
Shiwei Fan ◽  
Rajesh K. Bhagat ◽  
Maksim Dadonau ◽  
Megan Davies Wykes ◽  
...  

A series of experiments was undertaken on an intercity train carriage aimed at providing a “proof of concept” for three methods in improving our understanding of airflow behaviour and the accompanied dispersion of exhaled droplets. The methods used included the following: measuring CO2 concentrations as a proxy for exhaled breath, measuring the concentrations of different size fractions of aerosol particles released from a nebuliser, and visualising the flow patterns at cross-sections of the carriage by using a fog machine and lasers. Each experiment succeeded in providing practical insights into the risk of airborne transmission. For example, it was shown that the carriage is not well mixed over its length, however, it is likely to be well mixed along its height and width. A discussion of the suitability of the fresh air supply rates on UK train carriages is also provided, drawing on the CO2 concentrations measured during these experiments.


Author(s):  
Veera Manek ◽  
Tao Fang ◽  
S. Mostafa Ghiaasiaan ◽  
Jeff Patelczyk

Abstract Single-phase and two-phase frictional pressure drop in horizontally-oriented double helically coiled tubes confined in a cylindrical shell is experimentally studied using an instrumented test loop that represents a prototypical liquified natural gas (LNG) fuel delivery system for internal combustion (IC) engines. Adiabatic experimental data addressing liquid (water) and gas (nitrogen) single-phase flows, as well as two-phase flows (air-water) in the helicoidally coiled tubes are presented. The range of Reynolds numbers for single-phase flow experiments is 2600 to 4800. In two-phase flow experiments the liquid-only and gas-only Reynolds numbers varied in 1030 to 6600 and 1700 to 17700 ranges, respectively. In laminar single-phase flow regime the measured friction factors are in relatively good agreement with well-established correlations. In the turbulent flow regime the measured friction factors are moderately higher than the prediction of well-established published correlations. Two-phase flow frictional pressure drops are compared with some relevant correlations, with poor agreement. The generated experimental data are empirically correlated based on the two-phase flow multiplier concept.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1026
Author(s):  
Keith Bateman ◽  
Shota Murayama ◽  
Yuji Hanamachi ◽  
James Wilson ◽  
Takamasa Seta ◽  
...  

The construction of a repository for geological disposal of radioactive waste will include the use of cement-based materials. Following closure, groundwater will saturate the repository and the extensive use of cement will result in the development of a highly alkaline porewater, pH > 12.5; this fluid will migrate into and react with the host rock. The chemistry of the fluid will evolve over time, initially high [Na] and [K], evolving to a Ca-rich fluid, and finally returning to the groundwater composition. This evolving chemistry will affect the long-term performance of the repository, altering the physical and chemical properties, including radionuclide behaviour. Understanding these changes forms the basis for predicting the long-term evolution of the repository. This study focused on the determination of the nature and extent of the chemical reaction, as well as the formation and persistence of secondary mineral phases within a mudstone, comparing data from sequential flow experiments with the results of reactive transport modelling. The reaction of the mudstone with the cement leachates resulted in small changes in pH with the precipitation of calcium aluminium silicate hydrate (C-(A-)S-H) phases of varying compositions. As the system evolves, secondary C-(A-)S-H phases re-dissolve and are replaced by secondary carbonates. This general sequence was successfully simulated using reactive transport modelling.


Sign in / Sign up

Export Citation Format

Share Document