Studies on the structure and function of the epidermal-growth-factor receptor

1984 ◽  
Vol 12 (2) ◽  
pp. 160-165 ◽  
Author(s):  
MARY GREGORIOU ◽  
ANTHONY R. REES
2019 ◽  
Vol 2 (1) ◽  
pp. 12 ◽  
Author(s):  
David T. Clarke ◽  
Marisa L. Martin-Fernandez

Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.


2020 ◽  
Vol 176 (1) ◽  
pp. 162-174
Author(s):  
Amin Cheikhi ◽  
Teresa Anguiano ◽  
Jane Lasak ◽  
Baoli Qian ◽  
Amrita Sahu ◽  
...  

Abstract Arsenic exposure impairs muscle metabolism, maintenance, progenitor cell differentiation, and regeneration following acute injury. Low to moderate arsenic exposures target muscle fiber and progenitor cell mitochondria to epigenetically decrease muscle quality and regeneration. However, the mechanisms for how low levels of arsenic signal for prolonged mitochondrial dysfunction are not known. In this study, arsenic attenuated murine C2C12 myoblasts differentiation and resulted in abnormal undifferentiated myoblast proliferation. Arsenic prolonged ligand-independent phosphorylation of mitochondrially localized epidermal growth factor receptor (EGFR), a major driver of proliferation. Treating cells with a selective EGFR kinase inhibitor, AG-1478, prevented arsenic inhibition of myoblast differentiation. AG-1478 decreased arsenic-induced colocalization of pY845EGFR with mitochondrial cytochrome C oxidase subunit II, as well as arsenic-enhanced mitochondrial membrane potential, reactive oxygen species generation, and cell cycling. All of the arsenic effects on mitochondrial signaling and cell fate were mitigated or reversed by addition of mitochondrially targeted agents that restored mitochondrial integrity and function. Thus, arsenic-driven pathogenesis in skeletal muscle requires sustained mitochondrial EGFR activation that promotes progenitor cell cycling and proliferation at the detriment of proper differentiation. Collectively, these findings suggest that the arsenic-activated mitochondrial EGFR pathway drives pathogenic signaling for impaired myoblast metabolism and function.


Sign in / Sign up

Export Citation Format

Share Document