Mechanism of ribosomal subunit joining during eukaryotic translation initiation

2008 ◽  
Vol 36 (4) ◽  
pp. 653-657 ◽  
Author(s):  
Michael G. Acker ◽  
Jon R. Lorsch

Decades of research have yielded significant insight into the mechanism by which a cell translates an mRNA into the encoded protein. However many of the molecular details of the process remain a mystery. Translation initiation is an important control point in gene expression, and misregulation can lead to diseases such as cancer. A better understanding of the mechanism of translation initiation is imperative for the development of novel therapeutic agents. Recently, a combination of genetic, biochemical and biophysical studies has begun to shed light on how, at a molecular level, the translational machinery initiates protein synthesis. In the present review, we briefly compare and contrast the initiation pathways utilized by bacteria, archaea and eukaryotes, and then focus on translation initiation in eukaryotes and recent advances in our understanding of the subunit joining step of the process.

2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


2001 ◽  
Vol 21 (15) ◽  
pp. 4900-4908 ◽  
Author(s):  
Anjanette Searfoss ◽  
Thomas E. Dever ◽  
Reed Wickner

ABSTRACT The 3′ poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)+ mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)+ mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2369-2369
Author(s):  
Steven M. Kornblau ◽  
Chenyue W Hu ◽  
Yihua Qiu ◽  
Suk Young Yoo ◽  
Rebecca A Murray ◽  
...  

Abstract Background. Conceptually mRNA processing and ribosomal regulation should interact as both affect mRNA translation and protein production. We studied protein expression and functional relationships between proteins in AML using a custom made reverse phase protein array (RPPA), probed with 231 strictly validated antibodies. We found a relationship between expression of Ribosomal Protein S6 (HUGO name R6SP, a.k.a. S6RP) and Eukaryotic Translation Initiation Factor 4EBinding Protein 1, (HUGO name EIF4EBP1). R6SP, a 40S ribosomal subunit component, activated by phosphorylation, regulates cell growth via selective mRNA translation. EIF4EBP1 interacts with eIF4E to recruit the 40S ribosomal subunit, thereby affecting ribosomal assembly. When phosphorylated, in response to cellular signaling, it releases eIF4E allowing transcription. Methods. Our RPPA has protein from leukemia enriched cells from 511 newly diagnosed AML patients and was probed with 231 strictly validated antibodies, including antibodies against total RPS6 and forms phosphorylated on S235-236 and S240-244, and against total EIF4EBP1 and forms phosphorylated on T37 & 46, T70 and S65. Expression was compared to normal bone marrow derived CD34+ cells. Interaction networks with the other 224 proteins were generated from the RPPA data using glasso and supplemented by the literature of known interactions. Results. A heatmap of expression of the 3 R6SP and 4 PA2 forms was generated and hierarchical k-and means clustering performed (Fig A). Using the “Prototype Clustering ”method an optimal division into four clusters (Fig B) was determined. This includes an “All-Off” state (18%), a state characterized by weak activation of RPS6 alone (RP-Only, 36%) activation of only EIF4EBP1 (EIF4EBP1-Only, 26%) and a group where both were on simultaneously (Both-On). The RPS6 interactome (Fig B) showed the expected positive correlation with mTOR, and P70 (Hugo RPS6KB1) and a previously unknown, but very strong, negative correlation with transcription factor ZNF296. The EIF4EBP1 interactome showed the expected strong positive correlation with many signal transduction pathways (MAP2K1, MAPK14) and proliferation related proteins (pRB, EIF2AK, EIF2S1, FOXO3) and negative correlation with several transcription factors (GATA3, SPI1, CREB). Cluster membership was unassociated with most clinical features including cytogenetics, FLT3 , RAS and NPM1 mutation, excluding gender (more F in All-Off, more M in Both-On, p=0.01). EIF4EBP1 and Both-On had higher WBC (p=0.0001) and % marrow (p=0.0001) and blood blasts (0.0007) and lower platelet counts (p=0.025). Response rates did not differ, although fewer All-Off were primary refractory. Relapse was more common in EIF4EBP1-Only and Both-On clusters. Overall survival (OS) and remission duration (RemDur) (Fig C) of the EIF4EBP1-Only and Both-On clusters was inferior to that of the All-Off and RP-Only clusters (OS median 41 & 45 vs. 52 &63,p=0.06, RemDur 39 & 27 weeks vs. 63 & 53, p=0.008) but this was restricted to Intermediate cytogenetics cases (Fig C “IntCyto” OS 49 & 55 weeks vs. 107& 79 p=0.01, RemDur 37 & 35 weeks vs. 89 & 53 , p = 0.005) that were FLT3 mutation ((Fig C “FLT3-WT” OS p=0.006, RemDur p0.007) and NPM1 mutation negative (Fig C “NPM1-WT”, OS p=0.006, RemDur p=0.001). Conclusions. Activation of EIF4EBP1, with or without RPS6 activation is prognostically adverse in AML, particularly in intermediate cytogenetic cases with wildtype FLT3 and NPM1. This is associated with increased proliferation. Therapy directed against EIF4EBP1 activity, e.g. that block it's phosphorylation, may have utility in the ~46% of cases of AML that demonstrate high levels of EIF4EBP1 phosphorylation, especially in FLT3/NPM1 wildtype cases. Many agents that inhibit signal transduction pathways are in clinical development, analyzing them for the ability to inhibition the activation of EIF4EBP1 might identify clinically useful molecules. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 4 (5) ◽  
pp. 948-959 ◽  
Author(s):  
Lei Li ◽  
Ching C. Wang

ABSTRACT Eukaryotic translation initiation factor 4E (eIF4E) binds to the m7GTP of capped mRNAs and is an essential component of the translational machinery that recruits the 40S small ribosomal subunit. We describe here the identification and characterization of two eIF4E homologues in an ancient protist, Giardia lamblia. Using m7GTP-Sepharose affinity column chromatography, a specific binding protein was isolated and identified as Giardia eIF4E2. The other homologue, Giardia eIF4E1, bound only to the m2,2,7GpppN structure. Although neither homologue can rescue the function of yeast eIF4E, a knockdown of eIF4E2 mRNA in Giardia by a virus-based antisense ribozyme decreased translation, which was shown to use m7GpppN-capped mRNA as a template. Thus, eIF4E2 is likely the cap-binding protein in a translation initiation complex. The same knockdown approach indicated that eIF4E1 is not required for translation in Giardia. Immunofluorescence assays showed wide distribution of both homologues in the cytoplasm. But eIF4E1 was also found concentrated and colocalized with the m2,2,7GpppN cap, 16S-like rRNA, and fibrillarin in the nucleolus-like structure in the nucleus. eIF4E1 depletion from Giardia did not affect mRNA splicing, but the protein was bound to Giardia small nuclear RNAs D and H known to have an m2,2,7GpppN cap, thus suggesting a novel function not yet observed among other eIF4Es in eukaryotes.


2008 ◽  
Vol 29 (3) ◽  
pp. 808-821 ◽  
Author(s):  
Byung-Sik Shin ◽  
Joo-Ran Kim ◽  
Michael G. Acker ◽  
Kathryn N. Maher ◽  
Jon R. Lorsch ◽  
...  

ABSTRACT The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.


Sign in / Sign up

Export Citation Format

Share Document