translation initiation factors
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 53)

H-INDEX

44
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Dan Li ◽  
Jihong Yang ◽  
Xin Huang ◽  
Hongwei Zhou ◽  
Jianlong Wang

Translational control has emerged as a fundamental regulatory layer of proteome complexity that governs cellular identity and functions. As initiation is the rate-limiting step of translation, we carried out an RNAi screen for key translation initiation factors required to maintain embryonic stem cell (ESC) identity. We identified eIF4A2 and defined its mechanistic action through Rps26-independent and -dependent ribosomes in translation initiation activation of mRNAs encoding pluripotency factors and the histone variant H3.3 with demonstrated roles in maintaining stem cell pluripotency. eIF4A2 also mediates translation initiation activation of Ddx6, which acts together with eIF4A2 to restrict the totipotent 2-cell transcription program in ESCs through Zscan4 mRNA degradation and translation repression. Accordingly, knockdown of eIF4A2 disrupts ESC proteome causing the loss of ESC identity. Collectively, we establish a translational paradigm of the protein synthesis of pluripotency transcription factors and epigenetic regulators imposed on their established roles in controlling pluripotency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Hao ◽  
Yawen Chen ◽  
Xiumin Yan ◽  
Xueliang Zhu

AbstractCilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258903
Author(s):  
Franziska Falk ◽  
Kevin Kamanyi Marucha ◽  
Christine Clayton

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3’-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5649
Author(s):  
Christoph Schatz ◽  
Susanne Sprung ◽  
Volker Schartinger ◽  
Helena Codina-Martínez ◽  
Matt Lechner ◽  
...  

Intestinal-type adenocarcinoma (ITAC) is a rare cancer of the nasal cavity and paranasal sinuses that occurs sporadically or secondary to exposure to occupational hazards, such as wood dust and leather. Eukaryotic translation initiation factors have been described as promising targets for novel cancer treatments in many cancers, but hardly anything is known about these factors in ITAC. Here we performed in silico analyses, evaluated the protein levels of EIF2S1, EIF5A and EIF6 in tumour samples and non-neoplastic tissue controls obtained from 145 patients, and correlated these results with clinical outcome data, including tumour site, stage, adjuvant radiotherapy and survival. In silico analyses revealed significant upregulation of the translation factors EIF6 (ITGB4BP), EIF5, EIF2S1 and EIF2S2 (p < 0.05) with a higher arithmetic mean expression in ITAC compared to non-neoplastic tissue (NNT). Immunohistochemical analyses using antibodies against EIF2S1 and EIF6 confirmed a significantly different expression at the protein level (p < 0.05). In conclusion, this work identifies the eukaryotic translation initiation factors EIF2S1 and EIF6 to be significantly upregulated in ITAC. As these factors have been described as promising therapeutic targets in other cancers, this work identifies candidate therapeutic targets in this rare but often deadly cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weifang Kang ◽  
Yue Wang ◽  
Wenping Yang ◽  
Jing Zhang ◽  
Haixue Zheng ◽  
...  

Ras-GTPase-activating protein (SH3 domain)-binding protein (G3BP) is an RNA binding protein. G3BP is a key component of stress granules (SGs) and can interact with many host proteins to regulate the expression of SGs. As an antiviral factor, G3BP can interact with viral proteins to regulate the assembly of SGs and thus exert antiviral effects. However, many viruses can also use G3BP as a proximal factor and recruit translation initiation factors to promote viral proliferation. G3BP regulates mRNA translation and attenuation to regulate gene expression; therefore, it is closely related to diseases, such as cancer, embryonic death, arteriosclerosis, and neurodevelopmental disorders. This review discusses the important discoveries and developments related G3BP in the biological field over the past 20 years, which includes the formation of SGs, interaction with viruses, stability of RNA, and disease progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yasmeen Ahmed Salaheldin ◽  
Salma Sayed Mohamed Mahmoud ◽  
Ebenezeri Erasto Ngowi ◽  
Vivian Aku Gbordzor ◽  
Tao Li ◽  
...  

Various research works have piled up conflicting evidence questioning the effect of oxidative stress in cancer. Reactive oxygen and nitrogen species (RONS) are the reactive radicals and nonradical derivatives of oxygen and nitrogen. RONS can act as a double-edged weapon. On the one hand, RONS can promote cancer initiation through activating certain signal transduction pathways that direct proliferation, survival, and stress resistance. On the other hand, they can mitigate cancer progression via their resultant oxidative stress that causes many cancer cells to die, as some recent studies have proposed that high RONS levels can limit the survival of cancer cells during certain phases of cancer development. Similarly, eukaryotic translation initiation factors are key players in the process of cellular transformation and tumorigenesis. Dysregulation of such translation initiation factors in the form of overexpression, downregulation, or phosphorylation is associated with cancer cell’s altering capability of survival, metastasis, and angiogenesis. Nonetheless, eIFs can affect tumor age-related features. Data shows that alternating the eukaryotic translation initiation apparatus can impact many downstream cellular signaling pathways that directly affect cancer development. Hence, researchers have been conducting various experiments towards a new trajectory to find novel therapeutic molecular targets to improve the efficacy of anticancer drugs as well as reduce their side effects, with a special focus on oxidative stress and initiation of translation to harness their effect in cancer development. An increasing body of scientific evidence recently links oxidative stress and translation initiation factors to cancer-related signaling pathways. Therefore, in this review, we present and summarize the recent findings in this field linking certain signaling pathways related to tumorigeneses such as MAPK and PI3K, with either RONS or eIFs.


Sign in / Sign up

Export Citation Format

Share Document