mtor pathway
Recently Published Documents





2022 ◽  
Vol 104 ◽  
pp. 108504
Ye Lu ◽  
Wenshan Zhong ◽  
Yuanyuan Liu ◽  
Weimou chen ◽  
Jinming zhang ◽  

2022 ◽  
Vol 103 ◽  
pp. 108427
Xiaoqian Xiao ◽  
Yanping Li ◽  
Yi Wang ◽  
Yuxi Zhang ◽  
Jilan Chen ◽  

2022 ◽  
Vol 48 (1) ◽  
pp. 58-63
Merve Nur Ataş ◽  
Barış Ertuğrul ◽  
Elif Sinem İplik ◽  
Bedia Çakmakoğlu ◽  

2022 ◽  
Vol 20 (1) ◽  
Jiabin Pan ◽  
Shiyang Sheng ◽  
Ling Ye ◽  
Xiaonan Xu ◽  
Yizhao Ma ◽  

Abstract Background Glioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs’ alteration remain unkown. Methods We collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs. Results We first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs. Conclusion Our findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy.

2022 ◽  
Vol 12 (1) ◽  
Chuanjun Zhuo ◽  
Yong Xu ◽  
Weihong Hou ◽  
Jiayue Chen ◽  
Qianchen Li ◽  

AbstractAntipsychotic pharmacotherapy has been widely recommended as the standard of care for the treatment of acute schizophrenia and psychotic symptoms of other psychiatric disorders. However, there are growing concerns regarding antipsychotic-induced side effects, including weight gain, metabolic syndrome (MetS), and extrapyramidal motor disorders, which not only decrease patient compliance, but also predispose to diabetes and cardiovascular diseases. To date, most studies and reviews on the mechanisms of antipsychotic-induced metabolic side effects have focused on central nervous system mediation of appetite and food intake. However, disturbance in glucose and lipid metabolism, and hepatic steatosis induced by antipsychotic drugs might precede weight gain and MetS. Recent studies have demonstrated that the mechanistic/mammalian target of rapamycin (mTOR) pathway plays a critical regulatory role in the pathophysiology of antipsychotic drug-induced disorders of hepatic glucose and lipid metabolism. Furthermore, antipsychotic drugs promote striatal mTOR pathway activation that contributes to extrapyramidal motor side effects. Although recent findings have advanced the understanding of the role of the mTOR pathway in antipsychotic-induced side effects, few reviews have been conducted on this emerging topic. In this review, we synthesize key findings by focusing on the roles of the hepatic and striatal mTOR pathways in the pathogenesis of metabolic and extrapyramidal side effects, respectively. We further discuss the potential therapeutic benefits of normalizing excessive mTOR pathway activation with mTOR specific inhibitors. A deeper understanding of pathogenesis may inform future intervention strategies using the pharmacological or genetic inhibitors of mTOR to prevent and manage antipsychotic-induced side effects.

2022 ◽  
Vol 8 (1) ◽  
Gang Gao ◽  
Yufen Duan ◽  
Feng Chang ◽  
Ting Zhang ◽  
Xinhu Huang ◽  

AbstractSpinal cord injury (SCI) is a devastating traumatic condition. METTL14-mediated m6A modification is associated with SCI. This study was intended to investigate the functional mechanism of RNA methyltransferase METTL14 in spinal cord neuron apoptosis during SCI. The SCI rat model was established, followed by evaluation of pathological conditions, apoptosis, and viability of spinal cord neurons. The neuronal function of primary cultured spinal motoneurons of rats was assessed after hypoxia/reoxygenation treatment. Expressions of EEF1A2, Akt/mTOR pathway-related proteins, inflammatory cytokines, and apoptosis-related proteins were detected. EEF1A2 was weakly expressed and Akt/mTOR pathway was inhibited in SCI rat models. Hypoxia/Reoxygenation decreased the viability of spinal cord neurons, promoted LDH release and neuronal apoptosis. EEF1A2 overexpression promoted the viability of spinal cord neurons, inhibited neuronal apoptosis, and decreased inflammatory cytokine levels. Silencing METTL14 inhibited m6A modification of EEF1A2 and increased EEF1A2 expression while METTL14 overexpression showed reverse results. EEF1A2 overexpression promoted viability and inhibited apoptosis of spinal cord neurons and inflammation by activating the Akt/mTOR pathway. In conclusion, silencing METTL14 repressed apoptosis of spinal cord neurons and attenuated SCI by inhibiting m6A modification of EEF1A2 and activating the Akt/mTOR pathway.

2022 ◽  
Vol 17 (1) ◽  
Han-Wen Chuang ◽  
Tse-Yen Wang ◽  
Chih-Chia Huang ◽  
I-Hua Wei

Abstract Background Several natural products have been demonstrated to be effective in the treatment of depressive disorders. Echinacoside, a naturally occurring phenol extracted from Cistanche tubulosa, Echinacea angustifolia, and Cistanche spp, has a wide range of physiological effects, such as antioxidation, neuroprotection, anti-inflammatory, and immunoregulation, which are closely related to depression. In addition, echinacoside can activate protein kinase B (Akt), extracellular signal–regulated kinase (ERK), and brain-derived neurotrophic factor (BDNF) in the brain. A key downstream event of the Akt, ERK, and BDNF signaling pathways, namely mechanistic target of rapamycin (mTOR) signaling, plays a crucial role in generating an rapid antidepressant effect. Thus, echinacoside is a promising therapeutic agent for depression. However, research regarding the role of echinacoside in antidepressant effect and brain mTOR activation remains lacking. Materials and methods The forced swimming test and Western blot analysis in C57BL/6 mice was used to investigate the antidepressant-like activities of echinacoside and the underlying mechanism involved inα-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)–Akt/ERK–mTOR pathway. Results We confirmed the suggestions by previous reports that echinacoside activates Akt/ERK signaling and further demonstrated that echinacoside could provide antidepressant-like effects in mice via the activation of AMPAR–Akt/ERK–mTOR pathway in the hippocampus. Conclusions To the best of our knowledge, our study is the first to reveal that echinacoside is a potential treatment for depressive disorders. Moreover, the present study suggests a mechanism for the neuroprotective effect of echinacoside.

2022 ◽  
Chenxi Li ◽  
Rui Liu ◽  
Yurong Song ◽  
Dongjie Zhu ◽  
Liuchunyang Yu ◽  

Abstract Triptolide (TP) is a DMARD highly effective in patients with RA. Hyaluronic acid (HA) hydrogels loaded RGD-attached gold nanoparticles containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo therapy, and in vivo imaging of RA. Heat was locally generated at the inflammation site after degradation of HA chains due to near-infrared resonance (NIR) irradiation of gold nanoparticles (AuNPs), and TP was released. Administration of the hybrid hydrogels containing low dosage of TP combined with NIR irradiation alleviated arthritic conditions and improved the inflamed joint in collagen-induced arthritis (CIA) mice. In vitro effect of the hydrogel was mediated through decrease of phosphorylation of mTOR and its substrate, p70S6K1, thus inhibiting mTOR pathway.

Sign in / Sign up

Export Citation Format

Share Document