Dissociation of Renin-Aldosterone and Renal Prostaglandin E during Volume Expansion Induced by Immersion in Normal Man

1980 ◽  
Vol 59 (1) ◽  
pp. 55-62 ◽  
Author(s):  
M. Epstein ◽  
M. D. Lifschitz ◽  
R. Re ◽  
E. Haber

1. The relationship of the renin-angiotensin-aldosterone axis with renal prostaglandin E is complex. Although studies have suggested that these two hormonal systems respond to experimental manipulations in a parallel manner, their interdependence has not been assessed fully during volume expansion. Since studies have demonstrated that in normal man the central hypervolaemia induced by water immersion to the neck produces a prompt and profound suppression of plasma renin activity and plasma aldosterone concentration without concomitant alteration of plasma composition, immersion afforded a unique opportunity to assess simultaneously the effects of central hypervolaemia on plasma renin activity, plasma aldosterone concentration and prostaglandin E excretion. 2. Seven normal subjects were studied twice while in balance on a diet containing 10 mmol of sodium/day, 100 mmol of potassium/day: with indomethacin administration (50 mg given every 6 h for five doses) and without indomethacin. Urinary prostaglandin E excretion was measured hourly and plasma renin activity and plasma aldosterone concentration at 30 min intervals. 3. Immersion was associated with a marked suppression of plasma renin activity (59 ± 7%) and plasma aldosterone concentration (55 ± 3%) with a return to pre-study values during the recovery hour. Concomitantly, urinary prostaglandin E excretion increased from 4.7 to a peak of 10.9 ng/min. Although administration of indomethacin lowered the basal rate of urinary prostaglandin E excretion and plasma renin activity, it did not prevent the subsequent augmentation of urinary prostaglandin E or the suppression of plasma renin activity and plasma aldosterone during the subsequent 4 h of immersion. 4. These results demonstrate a dissociation of renin-aldosterone and prostaglandin E during hypervolaemia and suggest that whereas prostaglandin E may constitute one of the major determinants of renin release clinically and experimentally, these two hormonal systems can be dissociated from each other in response to central volume expansion in man.

1977 ◽  
Vol 43 (3) ◽  
pp. 421-424 ◽  
Author(s):  
J. R. Sutton ◽  
G. W. Viol ◽  
G. W. Gray ◽  
M. McFadden ◽  
P. M. Keane

Responses of plasma renin activity, plasma aldosterone, plasma cortisol, and plasma electrolyte concentration and urinary electrolyte and aldosterone excretion were studied in four men during hypoxic decompression to a stimulated altitude of 4,760 m in a pressure chamber. Three of the four subjects developed significant acute mountain sickness. Plasma sodium and potassium concentrations were unchanged. No significant change in plasma renin activity was observed, but values tended to fall. Plasma aldosterone concentration was depressed while plasma cortisol was elevated and diurnal variation lost. Urinary sodium excretion was unchanged, but urinary potassium and aldosterone excretion were decreased. The decrease in plasma and urinary aldosterone and urinary potassium in the absence of change in plasma renin activity or plasma potassium is of uncertain origin. It is unlikely to be due to a decrease in adrenocorticotropin secretion since plasma cortisol rose during the same time. None of the changes could be causally implicated in the development of acute mountain sickness although the increase in plasma cortisol was greatest in the most ill.


Hypertension ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 488-496 ◽  
Author(s):  
Zeng Guo ◽  
Marko Poglitsch ◽  
Diane Cowley ◽  
Oliver Domenig ◽  
Brett C. McWhinney ◽  
...  

The aldosterone/renin ratio (ARR) is currently considered the most reliable approach for case detection of primary aldosteronism (PA). ACE (Angiotensin-converting enzyme) inhibitors are known to raise renin and lower aldosterone levels, thereby causing false-negative ARR results. Because ACE inhibitors lower angiotensin II levels, we hypothesized that the aldosterone/equilibrium angiotensin II (eqAngII) ratio (AA2R) would remain elevated in PA. Receiver operating characteristic curve analysis involving 60 patients with PA and 40 patients without PA revealed that the AA2R was not inferior to the ARR in screening for PA. When using liquid chromatography-tandem mass spectrometry to measure plasma aldosterone concentration, the predicted optimal AA2R cutoff for PA screening was 8.3 (pmol/L)/(pmol/L). We then compared the diagnostic performance of the AA2R with the ARR among 25 patients with PA administered ramipril (5 mg/day) for 2 weeks. Compared with basally, plasma levels of equilibrium angiotensin I (eqAngI) and direct renin concentration increased significantly ( P <0.01 or P <0.05) after ramipril treatment, whereas eqAngII and ACE activity (eqAngII/eqAngI) decreased significantly ( P <0.01). The changes of plasma renin activity and plasma aldosterone concentration in the current study were not significant. On day 14, 4 patients displayed false-negative results using ARR_direct renin concentration (plasma aldosterone concentration/direct renin concentration), 3 of whom also showed false-negative ARR_plasma renin activity (plasma aldosterone concentration/plasma renin activity). On day 15, 2 patients still demonstrated false-negative ARR_plasma renin activity, one of whom also showed a false-negative ARR_direct renin concentration. No false-negative AA2R results were observed on either day 14 or 15. In conclusion, compared with ARR which can be affected by ACE inhibitors causing false-negative screening results, the AA2R seems to be superior in detecting PA among subjects receiving ACE inhibitors.


2016 ◽  
Vol 34 ◽  
pp. e333-e334
Author(s):  
F. Giulietti ◽  
F. Spannella ◽  
E. Borioni ◽  
F.E. Lombardi ◽  
L. Landi ◽  
...  

2002 ◽  
Vol 283 (2) ◽  
pp. F294-F301 ◽  
Author(s):  
Klaus Höcherl ◽  
Martin C. Kammerl ◽  
Karl Schumacher ◽  
Dirk Endemann ◽  
Horst F. Grobecker ◽  
...  

We investigated the effect of cyclooxygenase (COX) activity on the regulation of the renin-angiotensin-aldosterone system by salt intake. Therefore, Sprague-Dawley rats were subjected to different salt diets [0.02, 0.6, and 8% NaCl (wt/wt)] and treated with the selective COX-2 inhibitor rofecoxib (10 mg · kg body wt−1 · day−1) or with ketorolac at a dose selective for COX-1 inhibition (2 mg · kg body wt−1 · day−1) for 3, 7, 14, and 21 days. Rofecoxib and ketorolac caused a similar reduction of renocortical PGE2 formation with a low-salt diet. Rofecoxib did not change plasma renin activity or renocortical renin mRNA abundance with any of the diets but clearly lowered plasma aldosterone concentration. In contrast, ketorolac delayed the increase in plasma renin activity and of renin mRNA in response to low salt intake but did not change plasma aldosterone concentration. Prolonged treatment with rofecoxib but not with ketorolac caused an upregulation of COX-2 expression while COX-1 mRNA abundance remained unchanged. These findings suggest that COX-1-derived, but not COX-2-derived, prostanoids are of relevance for the regulation of the renin system by salt intake.


Sign in / Sign up

Export Citation Format

Share Document