Intestinal ion transport in rats with spontaneous arterial hypertension

1988 ◽  
Vol 75 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Ralf Lübcke ◽  
Gilbert O. Barbezat

1. Ion balance, intestinal ion transport in vivo with luminal Ringer, and direct voltage clamping in vivo with luminal Ringer and sodium-free choline-Ringer were studied in young (40 days old) and adult (120 days old) spontaneously hypertensive rats (SHR) and age-matched normotensive controls (Wistar–Kyoto rats, WKY). 2. Faecal sodium output was significantly higher in SHR compared with WKY in both young (+ 67%) and adult (+ 43%) rats. 3. Small-intestinal sodium absorption was equal in young SHR and WKY, but significantly greater net sodium absorption was found in the ileum of adult SHR. In contrast, net sodium absorption was reduced from the colon of both young and adult SHR. 4. In adult SHR, the colonic transepithelial short-circuit current (Isc) and the transepithelial potential difference (PD) were significantly higher, whereas the transepithelial membrane resistance (Rm) was significantly lower than in WKY. There was an identical drop in Isc in both strains when luminal sodium was replaced by choline. These data cannot be explained by increased electrogenic cation (sodium) absorption in the SHR, but would favour chloride secretion. 5. It is suggested that in SHR membrane electrolyte transport abnormalities may also be present in the epithelial cells of the small and large intestine, as have been demonstrated already in blood cells by several investigators. The SHR may become an interesting experimental animal model for the study of generalized ion transport disorders.

2002 ◽  
Vol 93 (3) ◽  
pp. 873-881 ◽  
Author(s):  
Jonathan E. Phillips ◽  
John A. Hey ◽  
Michel R. Corboz

Submucosal glands secrete macromolecules and liquid that are essential for normal airway function. To determine the mechanisms responsible for airway gland secretion and the interaction between gland secretion and epithelial ion transport, studies were performed in porcine tracheal epithelia by using the hillocks and Ussing techniques. No significant baseline gland fluid flux ( J G) was measured by the hillocks technique after 3 min, and the epithelia had an average potential difference of 7.5 ± 0.5 mV (lumen negative) with a short-circuit current of 73 ± 4 μA/cm2, as measured by the Ussing technique. The secretagogue methacholine induced concentration-dependent increases in J G after 3 min from 0.003 μl · min−1 · cm−2 at 0.1 μM to 0.41 ± 0.04 μl · min−1 · cm−2 at 1,000 μM, with a 0.9 ± 0.1 mV hyperpolarization of the epithelium at 1,000 μM. When the epithelium was pretreated for 3 min with the sodium channel blocker amiloride, the methacholine (1,000 μM)-induced J G increased to 0.67 ± 0.09 μl · min−1 · cm−2, and the hyperpolarization increased to 2.2 ± 0.5 mV over the amiloride-pretreated level. When pretreated for 3 min with the chloride channel blocker diphenylamine-2-carboxylic acid, the methacholine (1,000 μM)-induced J G was inhibited to 0.20 ± 0.06 μl · min−1 · cm−2, and the methacholine-induced hyperpolarization was abolished. These data indicate that, in porcine airways, methacholine-induced J G may be increased by inhibition of sodium absorption and decreased by inhibition of chloride secretion.


1980 ◽  
Vol 239 (1) ◽  
pp. G5-G11 ◽  
Author(s):  
D. D. Boyd ◽  
C. N. Carney ◽  
D. W. Powell

The neurohumoral control of epithelial esophageal electrolyte transport was investigated by studying the effect of various hormones and neuroeffector agents on the potential difference (PD) in vivo or on the electrical parameters of electrolyte transport in vitro. The rabbit esophagus, which has no submucosal esophageal glands, demonstrated no effect of pentagastrin, cholecystokinin octapeptide, or synthetic secretin in vivo, and no effect of these hormones or of vasopressin, aldosterone, carbachol, epinephrine, or cAMP in vitro. The rabbit esophagus did respond to metabolic substrates (glucose) in vitro by increasing sodium absorption. In contrast, the opossum esophagus, which contains extensive submucosal glands, had a lower electrical resistance, PD, short-circuit current, and sodium absorption with higher chloride secretion. This esophagus responded to carbachol and epinephrine by sodium and chloride secretion. We believe that only the submucosal glands of the esophagus are under significant neurohumoral control while the sodium transporting function of the stratified squamous epithelium of this organ is important in maintaining its barrier function.


1985 ◽  
Vol 116 (1) ◽  
pp. 153-167
Author(s):  
J. W. HANRAHAN ◽  
J. E. PHILLIPS

1. Electrophysiological and tracer flux techniques were used to studyregulation of KC1 reabsorption across locust recta. Physiologically high K+levels (100 mmolI−1) on the lumen side stimulated net 36Cl flux and reduced the theoretical energy cost of anion transport under open-circuit conductions. 2. The stimulation of short-circuit current (Ibc i.e. active C− absorption) by crude corpora cardiaca extracts (CC) was not dependent on exogenous Ca2+. Stimulations of Ibc were greatly enhanced in the presence of theophylline, indicating that the rate of synthesis of cAMP is increased by CC extracts. High CC levels lowered transepithelial resistance (Rt), suggesting that chloride transport stimulating hormone (CTSH) regulates both active Cl− absorption and counter-ion (K+) permeability. 3. High mucosal osmolarity or K+ concentration decreased Ibc and caused a disproportionately large increase in Rt, consistent with a decrease in theshunt (K+) conductance. Measurements of relative mucosal-to-serosal membrane resistance confirmed that high mucosal K+ levels reduced apical membrane conductance. Lowering mucosal pH to values observed in vivo atthe end of resorptive cycles also inhibited Ibc, apparently without affecting K+ permeability.


1981 ◽  
Vol 240 (3) ◽  
pp. C110-C115 ◽  
Author(s):  
C. A. Bisbee

Prolactin is a known osmoregulatory hormone in lower vertebrates, and recent evidence indicates that this hormone modulates ionic concentrations in milk. In an ultrastructurally and biochemically differentiated primary cell culture system in which mouse mammary epithelium is maintained on floating collagen gels, prolactin causes an increase in short-circuit current (Isc) of monolayers of cells derived from midpregnant (24.6 to 48.0 microA . cm-2) and lactating (10.4 to 16.1 microA . cm-2) glands. Transepithelial potential differences (basal side ground) average about -12 mV and are similar to those seen in vivo. Prelactating mammary epithelial cell cultures have transepithelial resistances ranging from 374 omega . cm2 (prolactin present) to 507 omega . cm2 (prolactin absent), and lactating cell cultures have resistances averaging almost 1,000 omega . cm2. Prolactin effects require at most one day of culture maintenance in prolactin-containing medium, and the effects are not due to known contamination of prolactin preparations with arginine vasopressin or growth hormone. Medium concentrations of prolactin as low as 1 ng/ml can elicit these effects. In prelactating cell cultures not treated with prolactin, the Isc is equal to the rate of sodium absorption. Prolactin increases sodium absorption fourfold but increases Isc only twofold. Clearly, prolactin induces other active transport; neither potassium nor chloride movements can account for this additional transport. Resistance values, current-voltage plots, and permeability coefficients indicate that in vitro mammary epithelium is a moderately “tight” tissue. Comparisons with intact glands indicate that in vitro mammary epithelium closely resembles its in vivo counterpart. Floating collagen gel cultures appear suitable for elucidating transport properties in cellularly heterogeneous and structurally complex mammalian tissues.


1986 ◽  
Vol 251 (2) ◽  
pp. F278-F282 ◽  
Author(s):  
U. Gafter ◽  
S. Kathpalia ◽  
D. Zikos ◽  
K. Lau

Calcium absorption by spontaneously hypertensive rats (SHR) was variably reported to be different from normotensive Wistar-Kyoto (WKY) controls. Furthermore, blunted responsiveness to the intestinal effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] has also been postulated. To evaluate this hypothesis, calcium fluxes were measured by the Ussing technique across duodenum and descending colon with or without prior 1,25(OH)2D3 treatment. Duodenal mucosal-to-serosal calcium flux (Jm----s) (44.9 vs. 52.4 nmol X cm-2 X h-1), serosal-to-mucosal flux (Js----m) (25.6 vs. 28.4 nmol X cm-2 X h-1), and net flux (Jnet) were comparable. 1,25(OH)2D3 increased duodenal Jm----s in both SHR and WKY groups (95.2 and 86.8 nmol X cm-2 X h-1). Js----m was lower in SHR (26.1 vs. 35.6 nmol X cm-2 X h-1, P less than 0.01), although the tendency for a higher Jnet in SHR (68.6 vs. 51.2 nmoles X cm-2 X h-1) was statistically insignificant. Short-circuit current was higher in the colon of SHR, both before and after 1,25(OH)2D3, suggesting increased sodium transport. Basal colonic Jnet was virtually zero in both groups but comparably increased by 1,25(OH)2D3 because of stimulation in only Jm----s. Prevention of hypertension by hydralazine since the 4th wk of age did not alter the findings compared with the hypertensive SHR, suggesting calcium transport rates were unaffected by hypertension. These data indicate that in vitro, duodenal, and colonic active calcium transport by the SHR is similar to WKY. Their normal responses to 1,25(OH)2D3 do not support the hypothesis of intestinal resistance.


1975 ◽  
Vol 229 (2) ◽  
pp. 438-443 ◽  
Author(s):  
DW Powell ◽  
SM Morris ◽  
DD Boyd

The nature of the transmural electrical potential difference and the characteristics of water and electrolyte transport by rabbit esophagus were determined with in vivo and in vitro studies. The potential difference of the perfused esophagus in vivo was -28 +/- 3 mV (lumen negative). In vitro the potential difference was -17.9 +/- 0.6 mV, the short-circuit current 12.9 +/- 0.6 muA/cm2, and the resistance 1,466 +/- 43 ohm-cm2. Net mucosal-to-serosal sodium transport from Ringer solution in the short-circuited esophagus in vitro accounted for 77% of the simultaneously measured short-circuit current and net serosal-to-mucosal chloride transport for 14%. Studies with bicarbonate-free, chloride-free, and bicarbonate-chloride-free solutions suggested that the net serosal-to mucosal transport of these two anions accounts for the short-circuit current not due to sodium absorption. The potential difference and short-circuit current were saturating functions of bathing solution sodium concentration and were inhibited by serosal ouabain and by amiloride. Thus active mucosal-to-serosal sodium transport is the major determinant of the potential difference and short-circuit current in this epithelium.


1992 ◽  
Vol 82 (6) ◽  
pp. 667-672 ◽  
Author(s):  
S. N. Smith ◽  
E. W. F. W. Alton ◽  
D. M. Geddes

1. The basic defect in cystic fibrosis relates to abnormalities of ion transport in affected tissues, such as the respiratory and gastrointestinal tracts. The identification of the cystic fibrosis gene has enabled studies on the production of a cystic fibrosis transgenic mouse to be undertaken. Knowledge of normal ion transport will be necessary for the validation of any such animal model. We have therefore characterized selected responses of the murine trachea and caecum mounted in ‘mini’ Ussing chambers under open-circuit conditions. 2. Basal values for the trachea were: potential difference, 1.1 mV (sem 0.2; n=18); equivalent short-circuit current, 20.4 μA/cm2 (3.6); conductance, 18.2 mS/cm2 (1.7). Corresponding values for the caecum were: potential difference, 0.7 mV (0.1; n=18); equivalent short-circuit current, 11.0 μA/cm2 (1.6); conductance, 14.5 mS/cm2 (1.4). 3. Amiloride (10 μmol/l) produced a significant (P < 0.001) fall in potential difference of 43.0% (5.7) in the trachea, but had no significant effect in the caecum. 4. Subsequently, one of three protocols was used to assess the capacity of either tissue for chloride secretion. Addition of a combination of forskolin (1 μmol/l) and zardaverine (10 μmol/l) produced rises in the potential difference of 873% (509) in the trachea and 399% (202) in the caecum. Both A23187 (10 μmol/l) and phorbol dibutyrate (10 nmol/l) increased tracheal potential difference by 350% (182) and 147% (47), respectively. Neither had a significant effect in the caecum. 5. Subsequent addition of bumetanide caused a fall in the stimulated potential difference of between 39.8% and 71.7%, depending on secretagogue and tissue type. 6. When a homozygous transgenic cystic fibrosis mouse becomes available, these responses should allow such an animal to be distinguished from normal or heterozygous mice.


1983 ◽  
Vol 245 (4) ◽  
pp. G562-G567 ◽  
Author(s):  
J. H. Sellin ◽  
R. C. DeSoignie

The effect of glucocorticoids on intestinal ion transport was studied in ileum in vitro from control and methylprednisolone (MP)-treated (40 mg im for 2 days) rabbits under the following conditions: a) basal rates of Na and Cl transport, b) the response to an individual absorptive stimulus (alanine, glucose, or epinephrine), and c) the response to a combination of the three absorptive stimuli. The results indicate that MP 1) increases basal absorption of Na and Cl and secretion of bicarbonate (as measured by residual ion flux), 2) does not alter the specific transport pathways stimulated by maximal doses of alanine, glucose, or epinephrine, but 3) significantly increases the absorptive capacity of ileum. After addition of combined alanine, glucose, and epinephrine, MP-treated ileum absorbed 15.8 mueq X cm-2 X h-1 Na (vs. 6.6 in controls, P less than 0.001) and 9.5 mueq X cm-2 X h-1 Cl (vs. 4.1 in controls, P less than 0.005). Additionally MP did not alter the Na dependence of either the short-circuit current or Cl absorption found in controls, although there appears to be a portion of residual ion flux insensitive to epinephrine inhibition. These data suggest that the MP-induced increase in absorptive capacity is due to an increase in a postapical transport step, most probably the Na pump.


1990 ◽  
Vol 259 (1) ◽  
pp. G62-G69 ◽  
Author(s):  
L. L. Clarke ◽  
R. A. Argenzio

In contrast to in vivo findings, the equine proximal colon fails to demonstrate significant net absorption of Na+ and Cl- under in vitro conditions. The present study was undertaken to determine if endogenous prostanoids are responsible for this apparent lack of ion transport. Proximal colonic tissues from ponies were preincubated in either normal Ringer solution or in Ringer containing 1 microM indomethacin and studied in Ussing chambers containing these solutions. Untreated colonic mucosa demonstrated negligible Na(+)-Cl- absorption in the basal state. In contrast, indomethacin-treated colon significantly absorbed Na+ and Cl-, primarily as the result of an equivalent increase in the mucosal-to-serosal flux of these ions. Preincubation of proximal colon in 0.1 mM ibuprofen-treated Ringer yielded similar results. Treatment of indomethacin colon with 1 mM mucosal amiloride eliminated net Na(+)-Cl- absorption without affecting the short-circuit current (Isc). The Isc in control tissue was significantly greater than in indomethacin-treated tissue and was reduced by 0.1 mM serosal furosemide. Serosal addition of 0.1 microM prostaglandin E2 or 10 mM serosal plus mucosal theophylline to indomethacin-treated tissues abolished net Na(+)-Cl- absorption and increased the Isc to levels indistinguishable from control. In contrast, control tissues were essentially unaffected by these secretagogues. These findings indicated that Na(+)-Cl- absorption in equine proximal colon was electroneutral (possibly involving Na(+)-H+ exchange) and that the tissue was capable of electrogenic Cl- secretion. However, under the in vitro conditions, basal ion transport was dominated by endogenous prostanoids that abolished Na(+)-Cl- absorption and elicited near-maximal electrogenic Cl- secretion.


1983 ◽  
Vol 244 (5) ◽  
pp. G501-G506 ◽  
Author(s):  
K. A. Hubel

Scorpion venom, which depolarizes nerves, was used to obtain further evidence that intramural nerves affect ion transport by the rabbit ileum. Ileal epithelium, stripped of muscularis propria, was mounted in a flux chamber modified to permit electrical field stimulation (EFS) of the tissue. Response of the short-circuit current (Isc) to venom was most rapid on the serosal surface, and the response was eliminated by tetrodotoxin. Isc response was influenced by venom batch number and by factors within the tissue. Venom (10 micrograms/ml) and EFS each caused chloride secretion by reducing mucosal-to-serosal movement and by increasing serosal-to-mucosal movement. Sodium transport and residual ion fluxes did not change. In the presence of venom, EFS caused no further changes in ion transport, but tissues still responded to glucose and to aminophylline. The early peak of Isc was reduced about 40% by atropine, implying that acetylcholine, released by venom, stimulates muscarinic receptors. The blockade of the Isc response to venom with tetrodotoxin is further evidence that venom depolarizes intramural nerves and liberates transmitters that cause chloride secretion. The identity of the other transmitters is not known.


Sign in / Sign up

Export Citation Format

Share Document