Effect of varying alveolar oxygen partial pressure on diffusing capacity for nitric oxide and carbon monoxide, membrane diffusing capacity and lung capillary blood volume

1991 ◽  
Vol 81 (6) ◽  
pp. 759-765 ◽  
Author(s):  
C. D. R. Borland ◽  
Y. Cox

1. To examine the effect of varying oxygen partial pressure (Pao2) on nitric oxide (DLNO) and carbon monoxide (DLCO) diffusing capacity (transfer factor), 10 subjects performed combined DLCO/DLNO measurements with the inspired mixture made up with three different oxygen concentrations (25%, 18% and 15%) to give Pao2 values of 12–20 kPa. 2. A novel method is described for calculating membrane diffusing capacity (DM) and pulmonary capillary volume (Qc) from DLNO and DLCO. 3. The mean DMCO was 52.89 mmol min−1 kPa−1 and Qc was 0.056 litre. Reducing Pao2 from 20 to 12 kPa resulted in an increase in DLCO = −0.124 (O2%) + 11.67 (P < 0.001) and a fall in DLNO = 0.538 (O2%) + 32.01 (P < 0.001) and a fall in DLNO/DLCO = 0.107 (O2%) + 2.52 (P < 0.001). DM (P = 0.59) and Qc (P = 0.64) also tended to fall with falling Pao2. 4. It appears more likely that the minor reduction in DLNO that we have observed with falling Pao2 is due to diffusion rather than reaction limitation.

1985 ◽  
Vol 68 (1) ◽  
pp. 57-62 ◽  
Author(s):  
J. A. Wedzicha ◽  
F. E. Cotter ◽  
P. J. W. Wallis ◽  
A. C. Newland ◽  
D. W. Empey

1. The transfer factor for carbon monoxide and its subdivisions, the membrane diffusing capacity (Dm) and the pulmonary capillary blood volume (Vc), were measured in 16 patients with polycythaemia secondary to chronic hypoxic lung disease and in ten hypoxic non-polycythaemic control subjects. 2. The mean pulmonary capillary blood volume was significantly lower in the polycythaemic patients (31.6 ml, sd 11.2) compared with the control group (65.2 ml, sd 22.5) (P<0.001). 3. Erythrapheresis, as a method of isovolaemic haemodilution, was performed in 15 of the polycythaemic patients. The mean packed cell volume fell from 58 (sd 5)% to 47 (sd 5)% after treatment, with significant reductions in blood viscosity at both high and lower shear rates (P<0.001). 4. The mean pulmonary capillary blood volume increased from 32.3 ml (sd 11.3) before treatment to 48.7 ml (sd 18.7) after erythrapheresis (P<0.01), with no significant change in membrane diffusing capacity. 5. The rise in pulmonary capillary blood volume is another potential physiological advantage of the reduction of packed cell volume in patients with polycythaemia secondary to hypoxic lung disease.


1965 ◽  
Vol 20 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Denise Jouasset-Strieder ◽  
John M. Cahill ◽  
John J. Byrne ◽  
Edward A. Gaensler

The CO diffusing capacity (Dl) was measured by the single-breath method in eight anesthetized dogs. Pulmonary capillary blood volume (Vc) and membrane diffusing capacity (Dm) were determined in six animals by the method of Roughton and Forster. The studies were repeated after anemia had been induced by replacing whole blood with plasma. Large dogs were selected with a mean body weight of 29 kg and a mean alveolar volume of 2,020 ml (STPD) during tests. The mean arterial blood Hb decreased from 14.3 to 6.6 g/100 ml, the mean Dl from 27 to 12 ml/min mm Hg, and the mean Dm from 100 to 47 ml/min mm Hg. Vc averaged 67 ml in the control state and was not significantly changed during anemia. Reductions in Dl and Dm during anemia were proportional to the fall in blood Hb. Both Dl and Dm in all dogs, normal and anemic, were proportional to the volume of red blood cells in the lung capillaries (Vrbc). These results suggest that Vrbc might be an estimate of the useful area of the alveolar-capillary membrane while Dm/Vrbc should vary with changes in its thickness. The latter was not altered by anemia. alveolar capillary membrane; pulmonary membrane; diffusing capacity; pulmonary capillary RBC volume; pulmonary diffusion pathway; carbon monoxide Submitted on March 2, 1964


1997 ◽  
Vol 82 (4) ◽  
pp. 1091-1097 ◽  
Author(s):  
Pierre Vaïda ◽  
Christian Kays ◽  
Daniel Rivière ◽  
Pierre Téchoueyres ◽  
Jean-Luc Lachaud

Vaı̈da, Pierre, Christian Kays, Daniel Rivière, Pierre Téchoueyres, and Jean-Luc Lachaud.Pulmonary diffusing capacity and pulmonary capillary blood volume during parabolic flights. J. Appl. Physiol. 82(4): 1091–1097, 1997.—Data from the Spacelab Life Sciences-1 (SLS-1) mission have shown sustained but moderate increase in pulmonary diffusing capacity (Dl). Because of the occupational constraints of the mission, data were only obtained after 24 h of exposure to microgravity. Parabolic flights are often used to study some effects of microgravity, and we measured changes in Dl occurring at the very onset of weightlessness. Measurements of Dl, membrane diffusing capacity, and pulmonary capillary blood volume were made in 10 male subjects during the 20-s 0-G phases of parabolic flights performed by the “zero-G” Caravelle aircraft. Using the standardized single-breath technique, we measured Dl for CO and nitric oxide simultaneously. We found significant increases indl for CO (62%), in membrane diffusing capacity for CO (47%), in Dl for nitric oxide (47%), and in pulmonary capillary blood volume (71%). We conclude that major changes in the alveolar membrane gas transfers and in the pulmonary capillary bed occur at the very onset of microgravity. Because these changes are much greater than those reported during sustained microgravity, the effects of rapid transition from hypergravity to microgravity during parabolic flights remain questionable.


2008 ◽  
Vol 105 (5) ◽  
pp. 1441-1447 ◽  
Author(s):  
Connie C. W. Hsia ◽  
Peter D. Wagner ◽  
D. Merrill Dane ◽  
Harrieth E. Wagner ◽  
Robert L. Johnson

Although lung diffusing capacity for carbon monoxide (DlCO) is a widely used test of diffusive O2 transfer, few studies have directly related DlCO to O2-diffusing capacity (DlO2); none has used the components of DlCO, i.e., conductance of alveolar membrane and capillary blood, to predict DlO2 from rest to exercise. To understand the relationship between DlCO and DlO2 at matched levels of cardiac output, we analyzed cumulative data from rest to heavy exercise in 43 adult dogs, with normal lungs or reduced lung capacity following lung resection, that were studied by two techniques. 1) A rebreathing (RB) technique was used to measure DlCO and pulmonary blood flow at two O2 tensions, independent of O2 exchange. DlCO was partitioned into CO-diffusing capacity of alveolar membrane and pulmonary capillary blood volume using the Roughton-Forster equation and converted into an equivalent DlO2, [DlO2(RB)]. 2) A multiple inert-gas elimination technique (MIGET) was used to measure ventilation-perfusion distributions, O2 and CO2 exchange under hypoxia, to derive DlO2 [DlO2(MIGET)] by the Lilienthal-Riley technique and Bohr integration. For direct comparisons, DlO2(RB) was interpolated to the cardiac output measured by the Fick principle corresponding to DlO2(MIGET). The DlO2-to-DlCO ratio averaged 1.61. Correlation between DlO2(RB) and DlO2(MIGET) was similar in normal and post-resection groups. Overall, DlO2(MIGET) = 0.975 DlO2(RB); mean difference between the two techniques was under 5% for both animal groups. We conclude that, despite various uncertainties inherent in these two disparate methods, the Roughton-Forster equation adequately predicts diffusive O2 transfer from rest to heavy exercise in canines with normal, as well as reduced, lung capacities.


2007 ◽  
Vol 57 (2) ◽  
pp. 423-430 ◽  
Author(s):  
Katarzyna Cieślar ◽  
Vasile Stupar ◽  
Emmanuelle Canet-Soulas ◽  
Sophie Gaillard ◽  
Yannick Crémillieux

1997 ◽  
Vol 83 (3) ◽  
pp. 810-816 ◽  
Author(s):  
Sylvia Verbanck ◽  
Hans Larsson ◽  
Dag Linnarsson ◽  
G. Kim Prisk ◽  
John B. West ◽  
...  

Verbanck, Sylvia, Hans Larsson, Dag Linnarsson, G. Kim Prisk, John B. West, and Manuel Paiva. Pulmonary tissue volume, cardiac output and diffusing capacity in sustained microgravity. J. Appl. Physiol. 83(3): 810–816, 1997.—In microgravity (μG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to μG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls ( P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P< 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to μG.


Sign in / Sign up

Export Citation Format

Share Document