Renal Effects of Angiotensin I-Receptor Blockade and Angiotensin Convertase Inhibition in Man

1996 ◽  
Vol 90 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Francois Schmitt ◽  
Svetlozar Natov ◽  
Frank Martinez ◽  
Bernard Lacour ◽  
Thierry P. Hannedouche

1. The objective was to compare two means of inhibition of the renin—angiotensin system [angiotensin-converting enzyme inhibition and selective antagonism of angiotensin II subtype 1 (AT1) receptor] on renal function in 10 healthy normotensive volunteers on a normal sodium diet. Since mechanisms of action may differ between both drugs, a synergistic action was further studied by combining the two drugs. 2. The design was a double-blind randomized acute administration of either placebo or a single oral dose of enalapril, 20 mg, followed in each case by administration of the AT1 selective antagonist losartan potassium, 50 mg orally. 3. The methods included measurements of hormones (plasma renin activity, plasma aldosterone), blood pressure and renal function from 45 to 135 min after administration of placebo or enalapril, and from 45 to 135 min after losartan and placebo or losartan and enalapril. Renal function was studied using clearance of sodium, lithium, uric acid, inulin and para-aminohippuric acid. To examine further the determinants of glomerular filtration at the microcirculation level, fractional clearance of neutral dextran was determined and sieving curves were applied on a hydrodynamic model of ultrafiltration. 4. Losartan did not change plasma renin activity, blood pressure or glomerular filtration rate, but increased significantly renal plasma flow and urinary excretion of sodium and uric acid. Enalapril increased plasma renin activity and renal plasma flow, and decreased blood pressure without natriuretic, lithiuretic or uricosuric effects. The renal vasodilatation was potentiated when losartan and enalapril were combined, despite a further rise in plasma renin. In contrast to enalapril, losartan either alone or in combination with enalapril significantly depressed fractional clearances of dextran of small radii (34–42 Å). These changes in fractional clearances of dextran were presumably related to the rise in glomerular plasma flow since the other major determinants of filtration, i.e. transcapillary glomerular pressure gradient, ultrafiltration coefficient and membrane property, were computed as unchanged by either losartan, enalapril or a combination of both. 5. In conclusion, these findings suggest that in normal sodium-repleted man the renal, hormonal and blood pressure effects of AT1 antagonism and angiotensin-converting enzyme inhibition are not strictly similar and could be synergistic.

1978 ◽  
Vol 55 (s4) ◽  
pp. 367s-371s ◽  
Author(s):  
G. Bianchi ◽  
G. B. Picotti ◽  
G. Bracchi ◽  
D. Cusi ◽  
M. Gatti ◽  
...  

1. Almost all the factors that may cause a rise in blood pressure are, in turn, influenced by the increase in blood pressure per se. Thus any primary involvement of one or more of these factors in the pathogenesis of essential hypertension must be evaluated before or during the development of hypertension. 2. Young normotensive subjects both of whose parents are hypertensive have a much higher probability of developing hypertension than those whose parents are both normotensive. 3. The following measurements were made in 56 subjects of the first group (both parents hypertensive) and 35 of the second group (both parents normotensive), matched for age, sex and body surface area: renal plasma flow and glomerular filtration rate, using p-aminohippurate and inulin clearance; 24 h urinary excretion of aldosterone, protein and electrolytes; plasma renin activity; plasma volume. Plasma catecholamines and cardiac index were also measured in 26 subjects of the first group and 25 subjects of the second group using a radioenzymic method and echocardiography. 4. All these factors were similar in the two groups except that renal plasma flow was higher in the first group (767·2 ± 30 versus 650·7 ± 17 ml/min, P < 0·01). Plasma renin activity tended to be lower in subjects with a higher renal plasma flow, but there was no significant negative correlation between the two factors. 5. The possibility that the higher renal plasma flow in subjects with a high probability of developing hypertension is a compensatory mechanism for a primary intrarenal defect is discussed.


1984 ◽  
Vol 62 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Ernesto L. Schiffrin ◽  
Jolanta Gutkowska ◽  
Gaétan Thibault ◽  
Jacques Genest

The angiotensin I converting enzyme (ACE) inhibitor enalapril (MK-421), at a dose of 1 mg/kg or more by gavage twice daily, effectively inhibited the pressor response to angiotensin I for more than 12 h and less than 24 h. Plasma renin activity (PRA) did not change after 2 or 4 days of treatment at 1 mg/kg twice daily despite effective ACE inhibition, whereas it rose significantly at 10 mg/kg twice daily. Blood pressure fell significantly and heart rate increased in rats treated with 10 mg/kg of enalapril twice daily, a response which was abolished by concomitant angiotensin II infusion. However, infusion of angiotensin II did not prevent the rise in plasma renin. Enalapril treatment did not change urinary immunorcactive prostaglandin E2 (PGE2) excretion and indomethacin did not modify plasma renin activity of enalapril-treated rats. Propranolol significantly reduced the rise in plasma renin in rats receiving enalapril. None of these findings could be explained by changes in the ratio of active and inactive renin. Water diuresis, without natriuresis and with a decrease in potassium urinary excretion, occurred with the higher dose of enalapril. Enalapril did not potentiate the elevation of PRA in two-kidney one-clip Goldblatt hypertensive rats. In conclusion, enalapril produced renin secretion, which was in part β-adrenergically mediated. The negative short feedback loop of angiotensin II and prostaglandins did not appear to be involved. A vasodilator effect, apparently independent of ACE inhibition, was found in intact conscious sodium-replete rats.


1981 ◽  
Vol 61 (s7) ◽  
pp. 289s-293s ◽  
Author(s):  
F. Mantero ◽  
F. Fallo ◽  
G. Opocher ◽  
D. Armanini ◽  
M. Boscaro ◽  
...  

1. Patients with idiopathic hyperaldosteronism (IHA) show a response of aldosterone to posture which is not present in patients with aldosterone-producing adenoma (APA). We have determined whether this could be explained by a different sensitivity to angiotensin II. 2. Angiotensin II was infused in gradually increasing doses in six patients with APA and in seven patients with IHA. No changes in aldosterone concentration were found at the end of each period in APA, whereas there was a significant increase in IHA; blood pressure rose by a similar extent in both groups. 3. In order to evaluate the role of endogenous angiotensin II, captopril, a converting enzyme inhibitor, was administered to six patients with APA and five patients with IHA at a dose of 75 mg/day for 1 week. There was a significant fall of mean blood pressure in IHA and only minimal changes in APA. Plasma renin activity and plasma and urinary aldosterone were unchanged in APA. In IHA there was a small increase in upright plasma renin activity and a slight decrease in both plasma and urinary aldosterone, but these changes were not significant. 4. These findings further support the idea that idiopathic hyperaldosteronism is a clinical state different from that occurring in primary aldosteronism due to adenoma, and may be more closely related to essential hypertension.


Sign in / Sign up

Export Citation Format

Share Document