scholarly journals Human Auditory Brainstem Response to Temporal Gaps in Noise

2001 ◽  
Vol 44 (4) ◽  
pp. 737-750 ◽  
Author(s):  
Lynne A. Werner ◽  
Richard C. Folsom ◽  
Lisa R. Mancl ◽  
Connie L. Syapin

Gap detection is a commonly used measure of temporal resolution, although the mechanisms underlying gap detection are not well understood. To the extent that gap detection depends on processes within, or peripheral to, the auditory brainstem, one would predict that a measure of gap threshold based on the auditory brainstem response (ABR) would be similar to the psychophysical gap detection threshold. Three experiments were performed to examine the relationship between ABR gap threshold and gap detection. Thresholds for gaps in a broadband noise were measured in young adults with normal hearing, using both psychophysical techniques and electrophysiological techniques that use the ABR. The mean gap thresholds obtained with the two methods were very similar, although ABR gap thresholds tended to be lower than psychophysical gap thresholds. There was a modest correlation between psychophysical and ABR gap thresholds across participants. ABR and psychophysical thresholds for noise masked by temporally continuous, high-pass, or spectrally notched noise were measured in adults with normal hearing. Restricting the frequency range with masking led to poorer gap thresholds on both measures. High-pass maskers affected the ABR and psychophysical gap thresholds similarly. Notched-noise-masked ABR and psychophysical gap thresholds were very similar except that low-frequency, notched-noise-masked ABR gap threshold was much poorer at low levels. The ABR gap threshold was more sensitive to changes in signal-to-masker ratio than was the psychophysical gap detection threshold. ABR and psychophysical thresholds for gaps in broadband noise were measured in listeners with sensorineural hearing loss and in infants. On average, both ABR gap thresholds and psychophysical gap detection thresholds of listeners with hearing loss were worse than those of listeners with normal hearing, although individual differences were observed. Psychophysical gap detection thresholds of 3- and 6-month-old infants were an order of magnitude worse than those of adults with normal hearing, as previously reported; however, ABR gap thresholds of 3-month-old infants were no different from those of adults with normal hearing. These results suggest that ABR gap thresholds and psychophysical gap detection depend on at least some of the same mechanisms within the auditory system.

1982 ◽  
Vol 25 (4) ◽  
pp. 528-535 ◽  
Author(s):  
Larry E. Humes ◽  
Marleen G. Ochs

In the first portion this study, the effects of two levels of contralateral masking on the auditory brainstem response (ABR) were investigated in 10 normal-hearing subjects. No significant changes were observed in the mean latency-intensity functions or the mean amplitude-intensity functions of this group of subjects when noise of various levels was added to the nontest ear. In the second portion of this study, ABRs were also recorded from the poorer ear of four subjects with a profound unilateral sensorineural hearing loss. Results from the latter group revealed a crossed-over wave V in all cases when the stimulus was delivered to the poorer ear and the nontest (better) ear was not masked. Contralateral masking obliterated this "crossed ABB" in all four unilaterally impaired subjects. These results provide support for the use of contralateral masking when recording from the poorer ear of subjects having asymmetrical hearing loss.


2011 ◽  
Vol 22 (02) ◽  
pp. 104-112 ◽  
Author(s):  
Martin Pienkowski ◽  
Mats Ulfendahl

Background: Sensory hearing loss is predominantly caused by the destruction of cochlear outer hair cells (OHCs), inner hair cells (IHCs), or spiral ganglion cells (SGCs). There have been a number of attempts to differentiate between these etiologies of hearing loss, using various psychoacoustic and physiologic paradigms. Purpose: Here we investigate the potential of the auditory brainstem response (ABR) input/output function for such differential diagnosis. On the basis of the saturation of the OHC-based cochlear amplifier, it was hypothesized that selective impairment of OHCs would reduce ABR amplitudes at low to moderate but not at high sound levels. Selective impairment of IHCs or SGCs would reduce ABR amplitudes more or less uniformly across sound level. Finally, a mix of OHC and IHC or SGC impairment would reduce ABR amplitudes at all sound levels but less so at high levels depending on the relative contribution of OHC impairment to the hearing loss. Research Design: To test these hypotheses, normal-hearing adult guinea pigs were intravenously injected with either salicylate, furosemide, or quinine, under ketamine anesthesia. ABRs, as well as distortion-product otoacoustic emissions (DPOAEs), were measured as a function of the sound stimulus level before and after drug injection. Results: Following salicylate injection, ABR amplitudes were reduced only at low–moderate stimulus levels. Following furosemide or quinine injection, ABR amplitudes were reduced at all levels but less so at high ones. This is in accord with the expectation that acute salicylate administration selectively affects the OHCs, while furosemide and quinine affect both OHCs and IHCs/SGCs. Such differential diagnosis was not possible solely on the basis of DPOAE amplitudes, which were unchanged at high stimulus levels after the injection of each of the three drugs. Comparison of ABR and DPOAE threshold shifts could also differentiate the effects of salicylate from those of furosemide and quinine but could not, for example, unequivocally point to salicylate's selective impairment of OHCs. Conclusions: ABR amplitudes appear suitable for differentiating between damage to OHCs and IHCs/SGCs, at least in a controlled experimental setting where pre- and postmanipulation data are available. This could be useful for noninvasively testing the effects of drugs or acoustic overstimulation on the cochlea, at least in the laboratory. Clinical applicability would seem to be limited by the high variability in ABR amplitudes among normal-hearing humans but might be feasible in the future if regular ABR testing entered into routine clinical practice.


2018 ◽  
Author(s):  
Lasse Osterhagen ◽  
K. Jannis Hildebrandt

AbstractAge-related hearing loss (presbycusis) is caused by damage to the periphery as well as deterioration of central auditory processing. Gap detection is a paradigm to study age-related temporal processing deficits, which is assumed to be determined primarily by the latter. However, peripheral hearing loss is a strong confounding factor when using gap detection to measure temporal processing. In this study, we used mice from the CAST line, which is known to maintain excellent peripheral hearing, to rule out any contribution of peripheral hearing loss to gap detection performance. We employed an operant Go/No-go paradigm to obtain psychometric functions of gap in noise (GIN) detection at young and middle age. Besides, we measured auditory brainstem responses (ABR) and multiunit recordings in the auditory cortex (AC) in order to disentangle the processing stages of gap detection. We found detection thresholds around 0.6 ms in all measurement modalities. Detection thresholds did not increase with age. In the ABR, GIN stimuli are coded as onset responses to the noise that follows the gap, strikingly similar to the ABR of noise bursts in silence (NBIS). The simplicity of the neural representation of the gap together with the preservation of detection threshold in aged CAST mice suggests that GIN detection in the mouse is primarily determined by peripheral, not central processing.AbbreviaionsGINgap in noiseABRauditory brainstem responseACauditory cortexNBISnoise burst in silenceIINinhibitory interneuron


Sign in / Sign up

Export Citation Format

Share Document