scholarly journals Excitation of secondary Love and Rayleigh waves in a three-dimensional sedimentary basin evaluated by the direct boundary element method with normal modes

1998 ◽  
Vol 133 (2) ◽  
pp. 260-278 ◽  
Author(s):  
Ken Hatayama ◽  
Hiroyuki Fujiwara
Author(s):  
Saeid Kazemi ◽  
Atilla Incecik

A three-dimensional hydrodynamic analysis of interaction between a floating offshore structure and sea waves has been carried out using a novel approach which is based on the weighted residual technique and the direct boundary element method. The main advantage of the direct boundary element method is the fact that one can determine the total velocity potential directly. Direct BEM is more versatile and computationally more efficient than indirect BEM. Besides, the BEM can easily be coupled with other numerical methods, e.g. finite element method (FEM) in order to carry out structural analysis of deck of the platform due to impact. Firstly, the boundary value problem of three-dimensional interaction between regular sea waves and a semi-submersible will be described. Secondly, the direct boundary element method has been applied to predict hydrodynamic behaviour of Khazar Semi-Submersible Drilling Unit (KSSDU), which is the largest semi-submersible drilling platform under construction for a location in the Caspian Sea, North of Iran. The rigid body motion responses in six degrees of freedom of KHAZAR semi-submersible in response to encountering waves have been calculated by using the direct boundary element method. The results obtained from the direct BEM will be compared with those obtained by the results based on the conventional boundary element method (indirect BEM) which were obtained by the designers of KHAZAR semi-submersible.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Sign in / Sign up

Export Citation Format

Share Document