Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase

2001 ◽  
Vol 268 (6) ◽  
pp. 1640-1645
Author(s):  
Annelise Matharu ◽  
Hideyuki Hayashi ◽  
Hiroyuki Kagamiyama ◽  
Bruno Maras ◽  
Robert A. John
1992 ◽  
Vol 12 (9) ◽  
pp. 3757-3765
Author(s):  
J W Chen ◽  
B R Evans ◽  
S H Yang ◽  
H Araki ◽  
Y Oshima ◽  
...  

The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.


2002 ◽  
Vol 365 (1) ◽  
pp. 303-309 ◽  
Author(s):  
Wynand B.L. ALKEMA ◽  
Antoon K. PRINS ◽  
Erik de VRIES ◽  
Dick B. JANSSEN

The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, αArg145 and βArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants αArg145→Leu (αArg145Leu), αArg145Cys and αArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants βArg263Leu, βArg263Asn and βArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that βArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/Km) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the αArg145 mutants exhibited a 3–6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis—Menten complex accounts for the improved activity with β-lactam substrates. Analysis of pH—activity profiles of wild-type enzyme and the βArg263Lys mutant showed that βArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which αArg145 is involved in binding of β-lactam substrates and βArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein.


Biochemistry ◽  
1989 ◽  
Vol 28 (20) ◽  
pp. 8161-8167 ◽  
Author(s):  
Douglas L. Smith ◽  
Steven C. Almo ◽  
Michael D. Toney ◽  
Dagmar Ringe

1992 ◽  
Vol 12 (9) ◽  
pp. 3757-3765 ◽  
Author(s):  
J W Chen ◽  
B R Evans ◽  
S H Yang ◽  
H Araki ◽  
Y Oshima ◽  
...  

The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.


Biochemistry ◽  
1991 ◽  
Vol 30 (7) ◽  
pp. 1980-1985 ◽  
Author(s):  
Avis T. Danishefsky ◽  
James J. Onnufer ◽  
Gregory A. Petsko ◽  
Dagmar Ringe

1991 ◽  
Vol 275 (2) ◽  
pp. 447-452 ◽  
Author(s):  
M Lander ◽  
A R Pitt ◽  
P R Alefounder ◽  
D Bardy ◽  
C Abell ◽  
...  

The role of conserved arginine residues in hydroxymethylbilane synthase was investigated by replacing these residues in the enzyme from Escherichia coli with leucine residues by using site-directed mutagenesis. The kinetic parameters for these mutant enzymes and studies on the formation of intermediate enzyme-substrate complexes indicate that several of these arginine residues are involved in binding the carboxylate side chains of the pyrromethane cofactor and the growing oligopyrrole chain.


Sign in / Sign up

Export Citation Format

Share Document