unnatural amino acids
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 125)

H-INDEX

55
(FIVE YEARS 9)

2022 ◽  
Vol 7 (1) ◽  
pp. 522-532
Author(s):  
Jiaqi Hou ◽  
Xinjie Chen ◽  
Nan Jiang ◽  
Yanan Wang ◽  
Yi Cui ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Aleksandra Arsić ◽  
Cathleen Hagemann ◽  
Nevena Stajković ◽  
Timm Schubert ◽  
Ivana Nikić-Spiegel

AbstractModern light microscopy, including super-resolution techniques, has brought about a demand for small labeling tags that bring the fluorophore closer to the target. This challenge can be addressed by labeling unnatural amino acids (UAAs) with bioorthogonal click chemistry. The minimal size of the UAA and the possibility to couple the fluorophores directly to the protein of interest with single-residue precision in living cells make click labeling unique. Here, we establish click labeling in living primary neurons and use it for fixed-cell, live-cell, dual-color pulse–chase, and super-resolution microscopy of neurofilament light chain (NFL). We also show that click labeling can be combined with CRISPR/Cas9 genome engineering for tagging endogenous NFL. Due to its versatile nature and compatibility with advanced multicolor microscopy techniques, we anticipate that click labeling will contribute to novel discoveries in the neurobiology field.


2021 ◽  
Author(s):  
Yuying Ma ◽  
Kai Yang ◽  
Zhi Zachary Geng ◽  
Yugendar R. Alugubellia ◽  
Namir Shaabani ◽  
...  

As an essential enzyme to SARS-CoV-2, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 sites and the N-terminal protection group, we synthesized a series of MPro inhibitors that contain 𝛽-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 site. These inhibitors have a large variation of determined IC50 values that range from 4.8 to 650 nM. The determined IC50 values reveal that relatively small side chains at both P2 and P3 sites are favorable for achieving high in vitro MPro inhibition potency, the P3 site is tolerable toward unnatural amino acids with two alkyl substituents on the 𝛼-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. All structures show similar binding patterns of inhibitors at the MPro active site. A covalent interaction between the active site cysteine and a bound inhibitor was observed in all structures. In MPro, large structural variations were observed on residues N142 and Q189. All inhibitors were also characterized on their inhibition of MPro in 293T cells, which revealed their in cellulo potency that is drastically different from their in vitro enzyme inhibition potency. Inhibitors that showed high in cellulo potency all contain O-tert-butyl-threonine at the P3 site. Based on the current and a previous study, we conclude that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for peptidyl aldehyde inhibitors of MPro. This finding will be critical to the development of novel antivirals to address the current global emergency of concerning the COVID-19 pandemic.


2021 ◽  
Author(s):  
Xuesheng Wu ◽  
Zhetao Zheng ◽  
Hongmin Chen ◽  
Haishuang Lin ◽  
Yuelin Yang ◽  
...  

AbstractThe frequent emergence of drug resistance during the treatment of influenza A virus (IAV) infections highlights a need for effective antiviral countermeasures. Here, we present an antiviral method that utilizes unnatural amino acid-engineered drug-resistant (UAA-DR) virus. The engineered virus is generated through genetic code expansion to combat emerging drug-resistant viruses. The UAA-DR virus has unnatural amino acids incorporated into its drug-resistant protein and its polymerase complex for replication control. The engineered virus can undergo genomic segment reassortment with normal virus and produce sterilized progenies due to artificial amber codons in the viral genome. We validate in vitro that UAA-DR can provide a broad-spectrum antiviral strategy for several H1N1 strains, different DR-IAV strains, multidrug-resistant (MDR) strains, and even antigenically distant influenza strains (e.g., H3N2). Moreover, a minimum dose of neuraminidase (NA) inhibitors for influenza virus can further enhance the sterilizing effect when combating inhibitor-resistant strains, partly due to the promoted superinfection of unnatural amino acid-modified virus in cellular and animal models. We also exploited the engineered virus to achieve adjustable efficacy after external UAA administration, for mitigating DR virus infection on transgenic mice harboring the pair, and to have substantial elements of the genetic code expansion technology, which further demonstrated the safety and feasibility of the strategy. We anticipate that the use of the UAA-engineered DR virion, which is a novel antiviral agent, could be extended to combat emerging drug-resistant influenza virus and other segmented RNA viruses.


2021 ◽  
pp. 113861
Author(s):  
Elnaz Zeynaloo ◽  
Elsayed Zahran ◽  
Yu-Ping Yang ◽  
Emre Dikici ◽  
Trajen Head ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongxia Zhao ◽  
Wenlong Ding ◽  
Jia Zang ◽  
Yang Yang ◽  
Chao Liu ◽  
...  

AbstractSite-specific incorporation of unnatural amino acids (UAAs) with similar incorporation efficiency to that of natural amino acids (NAAs) and low background activity is extremely valuable for efficient synthesis of proteins with diverse new chemical functions and design of various synthetic auxotrophs. However, such efficient translation systems remain largely unknown in the literature. Here, we describe engineered chimeric phenylalanine systems that dramatically increase the yield of proteins bearing UAAs, through systematic engineering of the aminoacyl-tRNA synthetase and its respective cognate tRNA. These engineered synthetase/tRNA pairs allow single-site and multi-site incorporation of UAAs with efficiencies similar to those of NAAs and high fidelity. In addition, using the evolved chimeric phenylalanine system, we construct a series of E. coli strains whose growth is strictly dependent on exogenously supplied of UAAs. We further show that synthetic auxotrophic cells can grow robustly in living mice when UAAs are supplemented.


2021 ◽  
Vol 13 ◽  
Author(s):  
Alexander Kuhlemann ◽  
Gerti Beliu ◽  
Dieter Janzen ◽  
Enrica Maria Petrini ◽  
Danush Taban ◽  
...  

Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengran Wang ◽  
Chao Wang ◽  
Yumei Huo ◽  
Xiaobo Dang ◽  
Hongxiang Xue ◽  
...  

AbstractThe visible light induced, photocatalysts or photoabsorbing EDA complexes mediated cleavage of pyridinium C-N bond were reported in the past years. Here, we report an ionic compound promote homolytic cleavage of pyridinium C-N bond by exploiting the photonic energy from visible light. This finding is successfully applied in deaminative hydroalkylation of a series of alkenes including naturally occurring dehydroalanine, which provides an efficient way to prepare β-alkyl substituted unnatural amino acids under mild and photocatalyst-free conditions. Importantly, by using this protocol, the deaminative cyclization of peptide backbone N-terminals is realized. Furthermore, the use of Et3N or PPh3 as reductants and H2O as hydrogen atom source is a practical advantage. We anticipate that our protocol will be useful in peptide synthesis and modern peptide drug discovery.


2021 ◽  
Vol 7 (46) ◽  
Author(s):  
Maria Kowalski-Jahn ◽  
Hannes Schihada ◽  
Ainoleena Turku ◽  
Thomas Huber ◽  
Thomas P. Sakmar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document