Potential of the entomopathogenic fungus, Beauveria bassiana strain CS-1 as a biological control agent of Plutella xylostella (Lep.,Yponomeutidae)

1999 ◽  
Vol 123 (7) ◽  
pp. 423-425 ◽  
Author(s):  
C. -S. Yoon ◽  
G. -H. Sung ◽  
H. -S. Park ◽  
S. -G. Lee ◽  
J. -O. Lee
2009 ◽  
Vol 50 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Sthenia Santos Albano Amóra ◽  
Claudia Maria Leal Bevilaqua ◽  
Francisco Marlon Carneiro Feijó ◽  
Mariana Araújo Silva ◽  
Romeika Hermínia Macedo Assunção Pereira ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Robert B. Srygley ◽  
Stefan T. Jaronski

Beauveria bassiana(Fungi: Ascomycota) is an entomopathogenic fungus that serves as a biological control agent of Mormon cricketsAnabrus simplexHaldeman (Orthoptera: Tettigoniidae) and other grasshopper pests. To measure the dose-dependent response of Mormon crickets to fungal attack, we appliedB. bassianastrain GHA topically to adults using doses of 5.13 ×  to 1.75 ×  conidia in sunflower oil, with oil only as a control. After three weeks, we assessed the survivors' hemolymph for fungal cells, active phenoloxidase (PO), and lysozyme. Mortality increased and body mass of survivors decreased with conidial dose. survivors' PO activity was elevated to the same level independent of dose. Those with fungal cells visible in their hemolymph did not differ in PO activity from those with clear hemolymph. We conclude that circulating PO may be an important enzymatic defense againstBeauveriainfection and that it is associated with attempted clearing ofBeauveriablastospores and hyphae from Mormon cricket hemolymph.


Author(s):  
Ines Borgi ◽  
Jean-William Dupuy ◽  
Imen Blibech ◽  
Delphine Lapaillerie ◽  
Anne-Marie Lomenech ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 730-742
Author(s):  
Manish Dhawan ◽  
◽  
Neelam Joshi ◽  
Samandeep Kaur ◽  
Saroop Sandhu ◽  
...  

Intensive crop production and extensive use of harmful synthetic chemical pesticides create numerous socio-economic problems worldwide. Therefore, sustainable solutions are needed for insect pest control, such as biological control agents. The fungal insect pathogen Beauveria bassiana has shown considerable potential as a biological control agent against a broad range of insects. The insight into the virulence mechanism of B. bassiana is essential to show the robustness of its use. B. bassiana has several determinants of virulence, including the production of cuticle-degrading enzymes (CDEs), such as proteases, chitinases, and lipases. CDEs are essential in the infection process as they hydrolyze the significant components of the insect's cuticle. Moreover, B. bassiana has evolved effective antioxidant mechanisms that include enzyme families that act as reactive oxygen species (ROS) scavengers, e.g., superoxide dismutases, catalases, peroxidases, and thioredoxins. In B. bassiana, the number of CDEs and antioxidant enzymes are characterized in recent years. These enzymes are believed to be crucial player of evolutionary process in this organism and their role in various mechanism of biological control. Recent discoveries have significantly increased our potential understanding on several potentially wanted unknown mechanisms of B. bassiana infection. This review focuses on the progress detailed in the studies of these enzymes and provides an overview of enzymatic activities and their contributions to virulence.


2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Rina Novianti ◽  
Hafiz Fauzana ◽  
Rusli Rustam

The Oryctes rhinoceros pest is an important pest of palm oil plant.  Pest problems occur because  Oil Palm Empty Fruit Bunches (OPEFB) is added for soil fertility to create a breeding site for larvae O. rhinoceros. Generally, OPEFB will receive the plants more quickly when composted, and pest control is carried out in the compost. Biological control is more recommended because it is environmentally friendly, Therefore compost is added with biological control agent O. rhinoceros namely B. bassiana. This study is aimed to obtain the best conidia density of Beauveria bassiana in compost in controlling larvae O. rhinoceros. The research was carried out at the Plant Pest Laboratory and Experimental Garden, Faculty of Agriculture, Riau of University. The study was carried out from February to November 2020. The experiment on the conidia density of B. bassiana fungi in compost media against larvae O. rhinoceros, using a Completely Randomized Design (CRD), with 6 treatments 4 replications obtained 24 experimental units, while the treatments were 0 g.l-1, 15 g.l-1, 30 g.l-1, 45 g.l-1, 60 g.l-1 and 75 g.l-1. The results of the research revealed that  OPEFB compost + sawdust containing the fungus B. bassiana 75 g.l-1 (83,2 x108 kon/ml) had the best ability to control larvae O. rhinoceros with a total larvae mortality of 87% which caused early death of 54 hours after application, LT50 of 213 hours after application, and LC50 of 3,3% or the equivalent of 33 g.l-1 at 14 days after application.


Sign in / Sign up

Export Citation Format

Share Document