Basal forebrain nitric oxide synthase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: cellular basis for cortical blood flow regulation

2000 ◽  
Vol 12 (8) ◽  
pp. 2769-2780 ◽  
Author(s):  
X. K. Tong ◽  
E. Hamel
2009 ◽  
Vol 89 (5) ◽  
pp. 801-809 ◽  
Author(s):  
Shanti R. Tummala ◽  
Sanja Benac ◽  
Harry Tran ◽  
Anand Vankawala ◽  
Astrid Zayas-Santiago ◽  
...  

2002 ◽  
Vol 97 (6) ◽  
pp. 1528-1533 ◽  
Author(s):  
Franz Kehl ◽  
Hui Shen ◽  
Carol Moreno ◽  
Neil E. Farber ◽  
Richard J. Roman ◽  
...  

Background Despite intense investigation, the mechanism of isoflurane-induced cerebral hyperemia is unclear. The current study was designed to determine the contributions of neuronal nitric oxide synthase, prostaglandins, and epoxyeicosatrienoic acids to isoflurane-induced cerebral hyperemia. Methods Regional cerebral cortical blood flow was measured with laser Doppler flowmetry during stepwise increases of isoflurane from 0.0 to 1.2, 1.8, and 2.4 vol% end-tidal concentration in alpha-chloralose-urethane-anesthetized, C57BL/6 mice before and 45 min after administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI, 40 mg/kg, intraperitoneal), the cyclooxygenase inhibitor indomethacin (INDO, 10 mg/kg, intravenous), and the cytochrome P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-proparglyoxyphenyl)hexanoic acid (PPOH, 20 mg/kg, intravenous). Results Isoflurane increased regional cerebral cortical blood flow by 9 +/- 3, 46 +/- 21, and 101 +/- 26% (SD) at 1.2, 1.8, and 2.4 vol%, respectively. The increases in regional cerebral cortical blood flow were significantly (*P < 0.05) smaller after 7-NI (5 +/- 6, 29 +/- 19*, 68 +/- 15%*) or PPOH (4 +/- 8, 27 +/- 17*, 67 +/- 30%*), but not after administration of INDO (4 +/- 4, 33 +/- 18 [NS], 107 +/- 35% [NS]). The effect of combined treatment with 7-NI, PPOH, and INDO was not additive and was equal to that of either 7-NI or PPOH alone (5 +/- 5, 30 +/- 12*, 76 +/- 24%*). Chronic treatment of mice for 5 days with 7-NI (2 x 40 mg/kg, intraperitoneal) produced similar decreases in regional cerebral cortical blood flow as those seen with acute administration. Neither PPOH nor INDO conferred a significant additional block of the hyperemia in these animals. Conclusions Nitric oxide and epoxyeicosatrienoic acids contribute to isoflurane-induced hyperemia. However, only approximately one third of the cerebral hyperemic response to isoflurane is mediated by autacoids. The remaining part of this response appears to be mediated by a direct action of isoflurane on smooth muscle by some yet-unknown mechanism.


2021 ◽  
Author(s):  
Katrina J. Carter ◽  
Aaron T. Ward ◽  
J. Mikhail Kellawan ◽  
Marlowe W. Eldridge ◽  
Awni Al‐Subu ◽  
...  

2003 ◽  
Vol 111 (5) ◽  
pp. 759-759
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document