Determination of probability distribution of diplotype configuration (diplotype distribution) for each subject from genotypic data using the EM algorithm

2002 ◽  
Vol 66 (3) ◽  
pp. 183-193 ◽  
Author(s):  
Y. KITAMURA ◽  
M. MORIGUCHI ◽  
H. KANEKO ◽  
H. MORISAKI ◽  
T. MORISAKI ◽  
...  
2019 ◽  
Vol 29 (1) ◽  
pp. 51-67 ◽  
Author(s):  
Lev Kazakovtsev ◽  
Dmitry Stashkov ◽  
Mikhail Gudyma ◽  
Vladimir Kazakovtsev

For clustering problems based on the model of mixture probability distribution separation, we propose new Variable Neighbourhood Search algorithms (VNS) and evolutionary genetic algorithms (GA) with greedy agglomerative heuristic procedures and compare them with known algorithms. New genetic algorithms implement a global search strategy with the use of a special crossover operator based on greedy agglomerative heuristic procedures in combination with the EM algorithm (Expectation Maximization). In our new VNS algorithms, this combination is used for forming randomized neighbourhoods to search for better solutions. The results of computational experiments made on classical data sets and the testings of production batches of semiconductor devices shipped for the space industry demonstrate that new algorithms allow us to obtain better results, higher values of the log likelihood objective function, in comparison with the EM algorithm and its modifications.


2016 ◽  
Vol 144 (10) ◽  
pp. 3783-3798 ◽  
Author(s):  
Kenneth R. Knapp ◽  
Jessica L. Matthews ◽  
James P. Kossin ◽  
Christopher C. Hennon

The Cyclone Center project maintains a website that allows visitors to answer questions based on tropical cyclone satellite imagery. The goal is to provide a reanalysis of satellite-derived tropical cyclone characteristics from a homogeneous historical database composed of satellite imagery with a common spatial resolution for use in long-term, global analyses. The determination of the cyclone “type” (curved band, eye, shear, etc.) is a starting point for this process. This analysis shows how multiple classifications of a single image are combined to provide probabilities of a particular image’s type using an expectation–maximization (EM) algorithm. Analysis suggests that the project needs about 10 classifications of an image to adequately determine the storm type. The algorithm is capable of characterizing classifiers with varying levels of expertise, though the project needs about 200 classifications to quantify an individual’s precision. The EM classifications are compared with an objective algorithm, satellite fix data, and the classifications of a known classifier. The EM classifications compare well, with best agreement for eye and embedded center storm types and less agreement for shear and when convection is too weak (termed no-storm images). Both the EM algorithm and the known classifier showed similar tendencies when compared against an objective algorithm. The EM algorithm also fared well when compared to tropical cyclone fix datasets, having higher agreement with embedded centers and less agreement for eye images. The results were used to show the distribution of storm types versus wind speed during a storm’s lifetime.


2010 ◽  
Vol 35 (4) ◽  
pp. 543-550 ◽  
Author(s):  
Wojciech Batko ◽  
Bartosz Przysucha

AbstractAssessment of several noise indicators are determined by the logarithmic mean <img src="/fulltext-image.asp?format=htmlnonpaginated&src=P42524002G141TV8_html\05_paper.gif" alt=""/>, from the sum of independent random resultsL1;L2; : : : ;Lnof the sound level, being under testing. The estimation of uncertainty of such averaging requires knowledge of probability distribution of the function form of their calculations. The developed solution, leading to the recurrent determination of the probability distribution function for the estimation of the mean value of noise levels and its variance, is shown in this paper.


2020 ◽  
Vol 148 ◽  
Author(s):  
N. Gürsakal ◽  
B. Batmaz ◽  
G. Aktuna

Abstract When we consider a probability distribution about how many COVID-19-infected people will transmit the disease, two points become important. First, there could be super-spreaders in these distributions/networks and second, the Pareto principle could be valid in these distributions/networks regarding estimation that 20% of cases were responsible for 80% of local transmission. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and second we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken.


Sign in / Sign up

Export Citation Format

Share Document