High-dose CD34+ cells are not clinically relevant in reducing cytopenia and blood component consumption following myeloablative therapy and peripheral blood progenitor cell transplantation as compared with standard dose

Transfusion ◽  
2002 ◽  
Vol 42 (4) ◽  
pp. 443-450 ◽  
Author(s):  
Francois Lefrere ◽  
Richard Delarue ◽  
Dominique Somme ◽  
Vincent Levy ◽  
Gandhi Damaj ◽  
...  
Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3754-3761 ◽  
Author(s):  
R Haas ◽  
B Witt ◽  
R Mohle ◽  
H Goldschmidt ◽  
S Hohaus ◽  
...  

A retrospective analysis of long-term hematopoiesis was performed in a group of 145 consecutive patients who had received high-dose therapy with peripheral blood progenitor cell (PBPC) support between May 1985 and December 1993. Twenty-two patients had acute myelogenous leukemia, nine had acute lymphoblastic leukemia, 43 had Hodgkin's disease, 57 had non- Hodgkin's lymphoma, and 14 patients had multiple myeloma. Eighty-four patients were male and 61 female, with a median age of 37 years (range, 16 to 58 years). In 46 patients, PBPC were collected after cytotoxic chemotherapy alone, while 99 patients received cytokines either during steady-state hematopoiesis or post-chemotherapy. Sixty patients were treated with dose-escalated polychemotherapy, and 85 patients had a conditioning therapy including hyperfractionated total body irradiation at a total dose of 14.4 Gy. The duration of severe pancytopenia posttransplantation was inversely related to the number of reinfused granulocyte-macrophage colony-forming units (CFU-GM) and CD34+ cells. Threshold quantities of 2.5 x 10(6) CD34+ cells per kilogram or 12.0 x 10(4) CFU-GM per kilogram became evident and were associated with rapid neutrophil and platelet recovery within less than 18 and 14 days, respectively. These numbers were also predictive for long-term reconstitution, indicating that normal blood counts are likely to be achieved within less than 10 months after transplantation. Conversely, 12 patients were autografted with a median of 1.75 x 10(4) CFU-GM per kilogram resulting in delayed recovery to platelet counts of greater than 150 x 10(9)/L between 1 and 6 years. Our study includes bone marrow examinations in 50 patients performed at a median follow-up time of 10 months (range, 1 to 85 months) posttransplantation. A comparison with normal volunteers showed a 3.2-fold smaller proportion of bone marrow CD34+ cells, which was paralleled by an even more pronounced reduction in the plating efficiency of CFU-GM and burst-forming unit-erythroid. No secondary graft failure was observed, even in patients autografted with relatively low numbers of progenitor cells. This suggests that either the pretransplant regimens were not myeloablative, allowing autochthonous recovery, or that a small number of cells capable of perpetual self-renewal were included in the autograft products.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3961-3969 ◽  
Author(s):  
CH Weaver ◽  
B Hazelton ◽  
R Birch ◽  
P Palmer ◽  
C Allen ◽  
...  

The CD34 antigen is expressed by committed and uncommitted hematopoietic progenitor cells and is increasingly used to assess stem cell content of peripheral blood progenitor cell (PBPC) collections. Quantitative CD34 expression in PBPC collections has been suggested to correlate with engraftment kinetics of PBPCs infused after myeloablative therapy. We analyzed the engraftment kinetics as a function of CD34 content in 692 patients treated with high-dose chemotherapy (HDC). Patients had PBPCs collected after cyclophosphamide based mobilization chemotherapy with or without recombinant human granulocyte colony-stimulating factor (rhG-CSF) until > or = 2.5 x 10(6) CD34+ cells/kg were harvested. Measurement of the CD34 content of PBPC collections was performed daily by a central reference laboratory using a single technique of CD34 analysis. Forty-five patients required a second mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg and 15 patients with less than 2.5 x 10(6) CD34+ cells/kg available for infusion received HDC. A median of 9.94 x 10(6) CD34+ cells/kg (range, 0.5 to 112.6 x 10(6) CD34+ cells/kg) contained in the PBPC collections was subsequently infused into patients after the administration of HDC. Engraftment was rapid with patients requiring a median of 9 days (range, 5 to 38 days) to achieve a neutrophil count of 0.5 x 10(9)/L and a median of 9 days (range, 4 to 53+ days) to achieve a platelet count of > or = 20 x 10(9)/L. A clear dose-response relationship was evident between the number of CD34+ cells per kilogram infused between the number of CD34+ cells per kilogram infused and neutrophil and platelet engraftment kinetics. Factors potentially influencing the engraftment kinetics of neutrophil and platelet recovery were examined using a Cox regression model. The single most powerful mediator of both platelet (P = .0001) and neutrophil (P = .0001) recovery was the CD34 content of the PBPC product. Administration of a post-PBPC infusion myeloid growth factor was also highly correlated with neutrophil recovery (P = .0001). Patients receiving high-dose cyclophosphamide, thiotepa, and carboplatin had more rapid platelet recovery than patients receiving other regimens (P = .006), and patients requiring 2 mobilization procedures versus 1 mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg experienced slower platelet recovery (P = .005). Although a minimal threshold CD34 dose could not be defined, > or = 5.0 x 10(6) CD34+ cells/kg appears to be optimal for ensuring rapid neutrophil and platelet recovery.


2005 ◽  
Vol 91 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Alfredo Tartarone ◽  
Jenna Wunder ◽  
Gianpiero Romano ◽  
Raffaele Ardito ◽  
Giovanni lodice ◽  
...  

High-dose chemotherapy followed by autologous bone marrow or peripheral blood progenitor cell transplantation represents a recognized option in the treatment of solid tumors and hematologic diseases. Patients receiving high-dose chemotherapy are traditionally supported with parenteral nutrition with the aim to prevent malnutrition secondary to gastrointestinal toxicity and metabolic alterations induced by the conditioning regimens. Nevertheless, well-defined guidelines for its use in this clinical setting are lacking and there are several areas of controversy.


Sign in / Sign up

Export Citation Format

Share Document