cell content
Recently Published Documents


TOTAL DOCUMENTS

855
(FIVE YEARS 181)

H-INDEX

60
(FIVE YEARS 5)

Endocrinology ◽  
2022 ◽  
Author(s):  
Brendan J Houston ◽  
Anne E O’Connor ◽  
Degang Wang ◽  
Georgia Goodchild ◽  
D Jo Merriner ◽  
...  

Abstract Testicular derived inhibin B (α/βB dimers) acts in an endocrine manner to suppress pituitary production of follicle stimulating hormone (FSH), by blocking the actions of activins (βA/B/βA/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (βB-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate Inhbb  M364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male Inhbb  M364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area, in Inhbb  M364T/M364T males compared to wildtype males. Despite this testis phenotype, male Inhbb  M364T/M364T mutant mice retained normal fertility. Serum hormone analyses however, indicated that the Inhbb  M364T variant resulted in reduced circulating levels of activin B, but did not affect FSH production. We also examined the effect of this p.Met360Thr, and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man, on inhibin B and activin B in vitro biosynthesis. It was found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.


2022 ◽  
Author(s):  
Tamar Szoke ◽  
Nitsan Albocher ◽  
Omer Goldberger ◽  
Meshi Barsheshet ◽  
Anat Nussbaum-Shochat ◽  
...  

Liquid-liquid phase separation (LLPS) of proteins was shown in recent years to regulate spatial organization of cell content without the need for membrane encapsulation in eukaryotes and prokaryotes. Yet evidence for the relevance of LLPS for bacterial cell functionality is largely missing. Here we show that the sugar metabolism-regulating clusters, recently shown by us to assemble in the E. coli cell poles by means of the novel protein TmaR, are formed via LLPS. A mutant screen uncovered residues and motifs in TmaR that are important for its condensation. Upon overexpression, TmaR undergoes irreversible liquid-to-solid transition, similar to the transition of disease-causing proteins in human, which impairs bacterial cell morphology and proliferation. Not only does RNA contribute to TmaR phase separation, but by ensuring polar localization and stability of flagella-related transcripts, TmaR enables cell motility and biofilm formation, thus providing a linkage between LLPS and major survival strategies in bacteria.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 205
Author(s):  
Daniele Tammaro ◽  
Alberto Ballesteros ◽  
Claudio Walker ◽  
Norbert Reichelt ◽  
Ulla Trommsdorff

We explore the foam extrusion of expanded polypropylene with a long chain branched random co-polypropylene to make its production process simpler and cheaper. The results show that the presence of long chain branches infer high melt strength and, hence, a wide foamability window. We explored the entire window of foaming conditions (namely, temperature and pressure) by means of an ad-hoc extrusion pilot line design. It is shown that the density of the beads can be varied from 20 to 100 kg/m3 using CO2 and isobutane as a blowing agent. The foamed beads were molded by steam-chest molding using moderate steam pressures of 0.3 to 0.35 MPa independently of the closed cell content. A characterization of the mechanical properties was performed on the molded parts. The steam molding pressure for sintering expanded polypropylene beads with a long chain branched random co-polypropylene is lower than the one usually needed for standard polypropylene beads by extrusion. The energy saving for the sintering makes the entire manufacturing processes cost efficient and can trigger new applications.


2021 ◽  
Author(s):  
Sergei Shalygin ◽  
Omar Holguin

Abstract The toxin producing cyanobacterium Microcystis sp. was collected in the mid October 2020 from the shallow waters of Snow Lake (New Mexico, USA). This species caused a visible bloom consisting of the pale green irregular macro colonies. Mass spectral analysis of the biomass revealed the presence of 4 derivatives of microcystin in that bloom: MC-LR (in the water and biomass), MC-RR (in biomass), MC-LY (in biomass), and MC-YR (in biomass).Next-generation sequencing allowed the retrieval of two Microcystis sequences in the bloom; which are molecular benchmarks for toxic Microcystis that may be used in future monitoring studies. Light microscopy provided evidence for the taxonomic affiliation of the found morphotype as Microcystis flos-aquae (Wittrock) Kirchner. However, molecular sequencing and the present situation in cyanobacterial taxonomy prevented affiliation of our morphotype to Microcystis flos-aquae, justifying following name – Microcystis sp. Confocal microscopy was used to determine the distribution of the cell content utilizing 3D stereo imaging. Emission spectra analysis identified the pigment composition and pigment distribution within the cells. SEM revealed 3D arrangement of the cells in the colonies, texture of the surface of the cells (perhaps dehydrated collapsed polysaccharides), F-layer and pili-like structures. Additionally, SEM/EDS analysis confirmed the F-layer using elemental composition analysis, which showed sulfur in the F-layer – typical element for that structure. Through the use of AFM, we analyzed the texture of the cell's surface and confirmed pili-like structures.


2021 ◽  
Author(s):  
Adi Zheng ◽  
Gilles Dubuis ◽  
Maria Georgieva ◽  
Carla Susana Mendes Ferreira ◽  
Marc Serulla ◽  
...  

High-density lipoproteins (HDLs) prevent cell death induced by a variety of cytotoxic drugs. The underlying mechanisms are however still poorly understood. Here we present evidence that HDLs efficiently protect cells against thapsigargin (TG), a sarco/ endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, by extracting the drug from cells. Drug efflux could also be triggered to some extent by low-density lipoproteins and serum. HDLs did not reverse the non-lethal mild ER stress response induced by low TG concentrations or by SERCA knock-down but HDLs inhibited the toxic SERCA-independent effects mediated by high TG concentrations. HDLs could extract other lipophilic compounds, but not hydrophilic substances This work shows that HDLs utilize their capacity of loading themselves with lipophilic compounds, akin to their ability to extract cellular cholesterol, to reduce the cell content of hydrophobic drugs. This can be beneficial if lipophilic xenobiotics are toxic but may be detrimental to the therapeutic benefit of lipophilic drugs such as glibenclamide.


2021 ◽  
pp. neurintsurg-2021-018183
Author(s):  
Yang Liu ◽  
Waleed Brinjikji ◽  
Mehdi Abbasi ◽  
Daying Dai ◽  
Jorge L Arturo Larco ◽  
...  

BackgroundCompositional and structural features of retrieved clots by thrombectomy can provide insight into improving the endovascular treatment of ischemic stroke. Currently, histological analysis is limited to quantification of compositions and qualitative description of the clot structure. We hypothesized that heterogeneous clots would be prone to poorer recanalization rates and performed a quantitative analysis to test this hypothesis.MethodsWe collected and did histology on clots retrieved by mechanical thrombectomy from 157 stroke cases (107 achieved first-pass effect (FPE) and 50 did not). Using an in-house algorithm, the scanned images were divided into grids (with sizes of 0.2, 0.3, 0.4, 0.5, and 0.6 mm) and the extent of non-uniformity of RBC distribution was computed using the proposed spatial heterogeneity index (SHI). Finally, we validated the clinical significance of clot heterogeneity using the Mann–Whitney test and an artificial neural network (ANN) model.ResultsFor cases with FPE, SHI values were smaller (0.033 vs 0.039 for grid size of 0.4 mm, P=0.028) compared with those without. In comparison, the clot composition was not statistically different between those two groups. From the ANN model, clot heterogeneity was the most important factor, followed by fibrin content, thrombectomy techniques, red blood cell content, clot area, platelet content, etiology, and admission of intravenous tissue plasminogen activator (IV-tPA). No statistical difference of clot heterogeneity was found for different etiologies, thrombectomy techniques, and IV-tPA administration.ConclusionsClot heterogeneity can affect the clot response to thrombectomy devices and is associated with lower FPE. SHI can be a useful metric to quantify clot heterogeneity.


2021 ◽  
Vol 65 ◽  
pp. 188-192
Author(s):  
Lydia Abraham ◽  
John Pramod

Objectives: Haematopoietic stem cell transplantation (SCT) is curative for a number of benign and malignant hematological disorders. CD34 expression on haematopoietic progenitor cells is used to assess stem cell content in peripheral blood stem cell and bone marrow grafts. This study evaluated the relationship between numbers of CD34+ cells infused per kg and the timing of neutrophil and platelet engraftment. Materials and Methods: The effect of cell dose was studied in consecutive HSCT patients transplanted between November 2008 and December 2017. Neutrophil engraftment was defined as the first of 2 consecutive days with an absolute neutrophil count >0.5 × 109/L and platelet engraftment as unsupported platelet count >20 × 109/L for 7 days. Results: Of a total of 131 patients, 26 (19.8%) underwent an autologous SCT, while 105 (80.2%) underwent an allogeneic SCT. The median CD34 dose infused in the auto-SCT group was 5.29 × 106 CD34+cells/kg (IQR = 2.95–10.98) and 6.42 × 106 CD34+cells/kg (IQR = 4.20–9.20) in the allo-SCT group (P = 0.773). The median time to neutrophil engraftment in the auto-SCT group was 11 days (range 9.5–12) and in the allo-SCT group was 15 days (range 13–17), P ≤ 0.001. The median time to platelet engraftment in both groups was similar (12 days). When patients were divided into three groups based on CD34 dose (<5, 5–8 and >8), no difference was observed in the time to ANC or platelet engraftment. Similarly, no differences in time to engraftment were noted in each quartile of CD34 dosage in auto- and allo-SCT. Conclusion: Thus, it was concluded that a cell dose of approximately 5 × 106/kg provides reasonably rapid engraftment, with no advantage seen for a higher cell dose of >5.


Nutrition ◽  
2021 ◽  
pp. 111570
Author(s):  
Tolulope Peter Saliu ◽  
Thanutchaporn Kumrungsee ◽  
Koji Mitsumoto ◽  
Siyi Chen ◽  
Noriyuki Yanaka

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yilin Lin ◽  
Xiaoxian Pan ◽  
Zhihua Chen ◽  
Suyong Lin ◽  
Zhanlong Shen ◽  
...  

Abstract Background Growing evidence has shown that the prognosis for colon cancer depends on changes in microenvironment. The purpose of this study was to elucidate the prognostic value of long noncoding RNAs (lncRNAs) related to immune microenvironment (IM) in colon cancer. Methods Single sample gene set enrichment analysis (ssGSEA) was used to identify the subtypes of colon cancer based on the immune genomes of 29 immune signatures. Cox regression analysis identified a lncRNA signatures associated with immune infiltration. The Tumor Immune Estimation Resource database was used to analyze immune cell content. Results Colon cancer samples were divided into three subtypes by unsupervised cluster analysis. Cox regression analysis identified an immune infiltration-related 5-lncRNA signature. This signature combined with clinical factors can effectively improve the predictive ability for the overall survival (OS) of colon cancer. At the same time, we found that the expression of H19 affects the content of B cells and macrophages in the microenvironment of colon cancer and affects the prognosis of colon cancer. Finally, we constructed the H19 regulatory network and further analyzed the possible mechanisms. We found that knocking down the expression of H19 can significantly inhibit the expression of CCND1 and VEGFA. At the same time, the immunohistochemical assay found that the expression of CCND1 and VEGFA protein was significantly positively correlated with the infiltration of M2 type macrophages. Conclusion The findings may help to formulate clinical strategies and understand the underlying mechanisms of H19 regulation. H19 may be a biomarker for targeted treatment of colon cancer.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi8-vi9
Author(s):  
Hirokazu Takami ◽  
Kaishi Satomi ◽  
Kohei Fukuoka ◽  
Yuko Matsushita ◽  
Kai Yamasaki ◽  
...  

Abstract Background: Germ cell tumors (GCTs) preferentially occurs in pediatric and young adult age groups. Chemo- and radiation therapies cause long-term sequelae in their later lives. We searched for clinical and histopathological features to predict the prognosis and affect treatment response, with a future goal of treatment stratification.Methods: A total of 154 GCT cases were included in the analysis. Total of 114 germinoma cases underwent measurement of tumor cell content on H-E specimen, and 82 GCT cases underwent 450K methylation analysis. 12p gain was determined on methylation-based copy number computation and FISH. Association with progression-free and overall survival (PFS/OS) was investigated. Results: The tumor cell content was widely distributed from &lt;5% to 90% in the specimens, with a median value of 50%. Patients with a higher tumor cell content (&gt;=50%) showed shorter PFS than those with a lower tumor cell content (&lt;50 %) (p=0.03). In the multivariate analysis with tumor location, tumor cell content was the sole statistically significant prognostic factor (p=0.04). 12p gain was found in 25-out-of-82 cases (30%) and was more frequent in NGGCTs, particularly in cases with malignant components. The presence of 12p gain correlated with shorter PFS and OS, even with histology and tumor markers incorporated in the multivariate analysis. Among NGGCTs, 12p gain still had prognostic significance for PFS and OS. The 12p copy number status was shared among histological components in mixed GCTs. Whole-genome amplification was suggested by FISH.Conclusions: We found that tumor cell content significantly affected the prognosis of germinomas. 12p gain predicts the presence of malignant components of NGGCTs, and poor prognosis of the patients. Furthermore, 12p is likely to be an early event in the tumorigenesis of CNS GCT. These potentially open the possibility of leveraging these pathological and molecular factors in the future clinical trials when stratifying the treatment intensity.


Sign in / Sign up

Export Citation Format

Share Document