Experimental study on reactive power management in inverter-interfaced distributed generation system

Author(s):  
S. Jena ◽  
B.C. Babu ◽  
A. Naik
2019 ◽  
Vol 52 (3-4) ◽  
pp. 169-182 ◽  
Author(s):  
R Sitharthan ◽  
CK Sundarabalan ◽  
KR Devabalaji ◽  
T Yuvaraj ◽  
A Mohamed Imran

In this literature, a new automated control strategy has been developed to manage the power supply from the wind power generation system to the load. The main objective of this research work is to develop a fuzzy logic–based pitch angle control and to develop a static transfer switch to make power balance between the wind power generation system and the loads. The power management control system is a progression of logic expressions, designed based on generating power and load power requirement. The outcome of this work targets at an improved power production, active and reactive power compensation and ensures system load constraints. To validate the proposed control strategy, a detailed simulation study is carried out on a 9-MW wind farm simulation simulated in MATLAB/Simulink environment.


Author(s):  
T. Praveen Kumar ◽  
N. Subrahmanyam ◽  
Maheswarapu Sydulu

In this manuscript, the Power management of grid integrated hybrid distributed generation (DG) system with Particle swarm optimization (PSO) algorithm is proposed. The hybrid DG system combines with photovoltaic, wind turbine, fuel cell, battery. Depending on the use of hybrid sources and the changes of power production the variation of power can occurs in the DG system. The major purpose of the proposed method restrains the power flow (PF) on active with reactive power between the source and grid side. In the power system control the proposed PSO method is utilized to maximize the active with reactive PF and the controllers. The proposed method interact the load requirement energy and maintain the load sensitivity due to charging and discharging battery control. In the DG system, the proposed PSO method allows maximum power flow. To assess the PF, the constraints of equality and inequality have been evaluated and they are utilized to determine the accessibility of renewable energy source (RES), electricity demand, and the storage elements of charge level. The protection of the power system is enhanced based on the proposed PSO method. Additionally, for retaining a stable output the renewable power system and battery is used. The proposed method is activated in MATLAB/Simulink working platform and the efficiency is likened with other existing methods.


2017 ◽  
Vol 10 (3) ◽  
pp. 211 ◽  
Author(s):  
Soedibyo Soedibyo ◽  
Andri Pradipta ◽  
Suyanto Suyanto ◽  
M. Ridwan ◽  
Gusti Rinaldi Zulkarnain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document