A Framework for Model-Based Safety Requirements Round-Trip Engineering

Author(s):  
R. Mader ◽  
G. Grießnig ◽  
R. Obendrauf ◽  
P. Prinz ◽  
B. Winkler ◽  
...  
2010 ◽  
Vol 44 (6) ◽  
pp. 507-518 ◽  
Author(s):  
Arnab Ray ◽  
Raoul Jetley ◽  
Paul L. Jones ◽  
Yi Zhang

Abstract This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software.1


2019 ◽  
pp. 141-173
Author(s):  
Malte Lochau ◽  
Dennis Reuling ◽  
Johannes Bürdek ◽  
Timo Kehrer ◽  
Sascha Lity ◽  
...  

Author(s):  
Dominik Schopper ◽  
Stephan Rudolph

Most modern digital approaches to engineering are based on models and their model transformations. Most of these model transformations are mathematically speaking non-bijective mappings — so-called projections — where some information of the original model is lost during the mapping. From a theoretical point of view it is therefore of great interest to exactly examine the properties of these model transformations. In this paper at first the characteristics of a model are briefly explained. Then some of the most common model-based engineering approaches are reviewed and compared regarding their models and model transformations. In this examination the missing existence of an inverse transformation (a so-called text-to-model transformation, T2M) of a typical model transformation (a so-called model-to-text transformation, M2T) is identified. That discovery may well hold the key to the realization of a so-called round-trip engineering. The required existence of the inverse transformation to this round-trip engineering is then generically postulated as having the nature of a pattern recognition problem. For illustration purposes and a better understanding of the interpretation of the inverse transformation as a pattern recognition problem, a case study for the reconstruction of an abstract model from the concrete model is given using CAD-Data of a satellite. Since CAD models belong to geometry, dimensionless geometric moment invariants play a key role in the generic solution of the pattern recognition problem contained in this example.


Author(s):  
Aria HasanzadeZonuzy ◽  
Dileep Kalathil ◽  
Srinivas Shakkottai

In many real-world reinforcement learning (RL) problems, in addition to maximizing the objective, the learning agent has to maintain some necessary safety constraints. We formulate the problem of learning a safe policy as an infinite-horizon discounted Constrained Markov Decision Process (CMDP) with an unknown transition probability matrix, where the safety requirements are modeled as constraints on expected cumulative costs. We propose two model-based constrained reinforcement learning (CRL) algorithms for learning a safe policy, namely, (i) GM-CRL algorithm, where the algorithm has access to a generative model, and (ii) UC-CRL algorithm, where the algorithm learns the model using an upper confidence style online exploration method. We characterize the sample complexity of these algorithms, i.e., the the number of samples needed to ensure a desired level of accuracy with high probability, both with respect to objective maximization and constraint satisfaction.


2021 ◽  
Vol 102 (3) ◽  
Author(s):  
Mehrnoosh Askarpour ◽  
Livia Lestingi ◽  
Samuele Longoni ◽  
Niccolò Iannacci ◽  
Matteo Rossi ◽  
...  

AbstractThe development of Human Robot Collaborative (HRC) systems faces many challenges. First, HRC systems should be adaptable and re-configurable to support fast production changes. However, in the development of HRC applications safety considerations are of paramount importance, as much as classical activities such as task programming and deployment. Hence, the reconfiguration and reprogramming of executing tasks might be necessary also to fulfill the desired safety requirements. Model-based software engineering is a suitable means for agile task programming and reconfiguration. We propose a model-based design-to-deployment toolchain that simplifies the routine of updating or modifying tasks. This toolchain relies on (i) UML profiles for quick model design, (ii) formal verification for exhaustive search for unsafe situations (caused by intended or unintended human behavior) within the model, and (iii) trans-coding tools for automating the development process. The toolchain has been evaluated on a few realistic case studies. In this paper, we show a couple of them to illustrate the applicability of the approach.


2021 ◽  
Author(s):  
Sergej Japs ◽  
Harald Anacker ◽  
Lydia Kaiser ◽  
Jorg Holtmann SE-TRIP ◽  
Roman Dumitrescu ◽  
...  

2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Sign in / Sign up

Export Citation Format

Share Document