A Mixed resolution based High Efficiency Video Codec (HEVC)

Author(s):  
B. Mallik ◽  
A.S. Akbari ◽  
M.A. Hussain ◽  
A.L. Kor
2019 ◽  
Vol 17 (6) ◽  
pp. 2047-2063
Author(s):  
Taha T. Alfaqheri ◽  
Abdul Hamid Sadka

AbstractTransmission of high-resolution compressed video on unreliable transmission channels with time-varying characteristics such as wireless channels can adversely affect the decoded visual quality at the decoder side. This task becomes more challenging when the video codec computational complexity is an essential factor for low delay video transmission. High-efficiency video coding (H.265|HEVC) standard is the most recent video coding standard produced by ITU-T and ISO/IEC organisations. In this paper, a robust error resilience algorithm is proposed to reduce the impact of erroneous H.265|HEVC bitstream on the perceptual video quality at the decoder side. The proposed work takes into consideration the compatibility of the algorithm implementations with and without feedback channel update. The proposed work identifies and locates the frame’s most sensitive areas to errors and encodes them in intra mode. The intra-refresh map is generated at the encoder by utilising a grey projection method. The conducted experimental work includes testing the codec performance with the proposed work in error-free and error-prone conditions. The simulation results demonstrate that the proposed algorithm works effectively at high packet loss rates. These results come at the cost of a slight increase in the encoding bit rate overhead and computational processing time compared with the default HEVC HM16 reference software.


2018 ◽  
Vol 78 (6) ◽  
pp. 6701-6720
Author(s):  
Bruhanth Mallik ◽  
Akbar Sheikh-Akbari ◽  
Ah-Lian Kor

2003 ◽  
Author(s):  
T. Itoh ◽  
O. Kawai ◽  
K. Matsuda ◽  
T. Tsuda ◽  
T. Homma ◽  
...  
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shiping Zhu ◽  
Dongyu Zhao ◽  
Ling Zhang

Multiview video which is one of the main types of three-dimensional (3D) video signals, captured by a set of video cameras from various viewpoints, has attracted much interest recently. Data compression for multiview video has become a major issue. In this paper, a novel high efficiency fractal multiview video codec is proposed. Firstly, intraframe algorithm based on the H.264/AVC intraprediction modes and combining fractal and motion compensation (CFMC) algorithm in which range blocks are predicted by domain blocks in the previously decoded frame using translational motion with gray value transformation is proposed for compressing the anchor viewpoint video. Then temporal-spatial prediction structure and fast disparity estimation algorithm exploiting parallax distribution constraints are designed to compress the multiview video data. The proposed fractal multiview video codec can exploit temporal and spatial correlations adequately. Experimental results show that it can obtain about 0.36 dB increase in the decoding quality and 36.21% decrease in encoding bitrate compared with JMVC8.5, and the encoding time is saved by 95.71%. The rate-distortion comparisons with other multiview video coding methods also demonstrate the superiority of the proposed scheme.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 960
Author(s):  
Junghyun Lee ◽  
Jechang Jeong

This study describes the need to improve the weak filtering method for the in-loop filter process used identically in versatile video coding (VVC) and high efficiency video coding (HEVC). The weak filtering process used by VVC has been adopted and maintained since Draft Four during H.265/advanced video coding (AVC) standardization. Because the encoding process in the video codec utilizes block structural units, deblocking filters are essential. However, as many of the deblocking filters require a complex calculation process, it is necessary to ensure that they have a reasonable effect. This study evaluated the performance of the weak filtering portion of the VVC and confirmed that it is not functioning effectively, unlike its performance in the HEVC. The method of excluding the whole of weak filtering from VVC, which is a non-weak filtering method, should be considered in VVC standardization. In experimental result in this study, the non-weak filtering method brings 0.40 Y-Bjontegaard-Delta Bit-Rate (BDBR) gain over VVC Test Model (VTM) 6.0.


2021 ◽  
Author(s):  
Jakub Szekiełda ◽  
Adrian Dziembowski ◽  
Dawid Mieloch

This paper summarizes the research on the influence of HEVC (High Efficiency Video Coding) configuration on immersive video coding. The research was focused on the newest MPEG standard for immersive video compression – MIV (MPEG Immersive Video). The MIV standard is used as a preprocessing step before the typical video compression thus is agnostic to the video codec. Uncommon characteristics of videos produced by MIV causes, that the typical configuration of the video encoder (optimized for compression of natural sequences) is not optimal for such content. The experimental results prove, that the performance of video compression for immersive video can be significantly increased when selected coding tools are being used.


Sign in / Sign up

Export Citation Format

Share Document