scholarly journals Performance Comparison of Weak Filtering in HEVC and VVC

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 960
Author(s):  
Junghyun Lee ◽  
Jechang Jeong

This study describes the need to improve the weak filtering method for the in-loop filter process used identically in versatile video coding (VVC) and high efficiency video coding (HEVC). The weak filtering process used by VVC has been adopted and maintained since Draft Four during H.265/advanced video coding (AVC) standardization. Because the encoding process in the video codec utilizes block structural units, deblocking filters are essential. However, as many of the deblocking filters require a complex calculation process, it is necessary to ensure that they have a reasonable effect. This study evaluated the performance of the weak filtering portion of the VVC and confirmed that it is not functioning effectively, unlike its performance in the HEVC. The method of excluding the whole of weak filtering from VVC, which is a non-weak filtering method, should be considered in VVC standardization. In experimental result in this study, the non-weak filtering method brings 0.40 Y-Bjontegaard-Delta Bit-Rate (BDBR) gain over VVC Test Model (VTM) 6.0.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chan-seob Park ◽  
Gwang-Soo Hong ◽  
Byung-Gyu Kim

The joint collaborative team on video coding (JCT-VC) is developing the next-generation video coding standard which is called high efficiency video coding (HEVC). In the HEVC, there are three units in block structure: coding unit (CU), prediction unit (PU), and transform unit (TU). The CU is the basic unit of region splitting like macroblock (MB). Each CU performs recursive splitting into four blocks with equal size, starting from the tree block. In this paper, we propose a fast CU depth decision algorithm for HEVC technology to reduce its computational complexity. In2N×2N PU, the proposed method compares the rate-distortion (RD) cost and determines the depth using the compared information. Moreover, in order to speed up the encoding time, the efficient merge SKIP detection method is developed additionally based on the contextual mode information of neighboring CUs. Experimental result shows that the proposed algorithm achieves the average time-saving factor of 44.84% in the random access (RA) at Main profile configuration with the HEVC test model (HM) 10.0 reference software. Compared to HM 10.0 encoder, a small BD-bitrate loss of 0.17% is also observed without significant loss of image quality.


2019 ◽  
Vol 17 (6) ◽  
pp. 2047-2063
Author(s):  
Taha T. Alfaqheri ◽  
Abdul Hamid Sadka

AbstractTransmission of high-resolution compressed video on unreliable transmission channels with time-varying characteristics such as wireless channels can adversely affect the decoded visual quality at the decoder side. This task becomes more challenging when the video codec computational complexity is an essential factor for low delay video transmission. High-efficiency video coding (H.265|HEVC) standard is the most recent video coding standard produced by ITU-T and ISO/IEC organisations. In this paper, a robust error resilience algorithm is proposed to reduce the impact of erroneous H.265|HEVC bitstream on the perceptual video quality at the decoder side. The proposed work takes into consideration the compatibility of the algorithm implementations with and without feedback channel update. The proposed work identifies and locates the frame’s most sensitive areas to errors and encodes them in intra mode. The intra-refresh map is generated at the encoder by utilising a grey projection method. The conducted experimental work includes testing the codec performance with the proposed work in error-free and error-prone conditions. The simulation results demonstrate that the proposed algorithm works effectively at high packet loss rates. These results come at the cost of a slight increase in the encoding bit rate overhead and computational processing time compared with the default HEVC HM16 reference software.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258890
Author(s):  
Guowei Teng ◽  
Danqi Xiong ◽  
Ran Ma ◽  
Ping An

Versatile video coding (VVC) achieves enormous improvement over the advanced high efficiency video coding (HEVC) standard due to the adoption of the quadtree with nested multi-type tree (QTMT) partition structure and other coding tools. However, the computational complexity increases dramatically as well. To tackle this problem, we propose a decision tree accelerated coding tree units (CTU) partition algorithm for intra prediction in VVC. Firstly, specially designated image features are extracted to characterize the coding unit (CU) complexity. Then, the trained decision tree is employed to predict the partition results. Finally, based on our newly designed intra prediction framework, the partition process is early terminated or redundant partition modes are screened out. The experimental results show that the proposed algorithm could achieve around 52% encoding time reduction for various test video sequences on average with only 1.75% Bjontegaard delta bit rate increase compared with the reference test model VTM9.0 of VVC.


2021 ◽  
Author(s):  
Jakub Szekiełda ◽  
Adrian Dziembowski ◽  
Dawid Mieloch

This paper summarizes the research on the influence of HEVC (High Efficiency Video Coding) configuration on immersive video coding. The research was focused on the newest MPEG standard for immersive video compression – MIV (MPEG Immersive Video). The MIV standard is used as a preprocessing step before the typical video compression thus is agnostic to the video codec. Uncommon characteristics of videos produced by MIV causes, that the typical configuration of the video encoder (optimized for compression of natural sequences) is not optimal for such content. The experimental results prove, that the performance of video compression for immersive video can be significantly increased when selected coding tools are being used.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chou-Chen Wang ◽  
Chi-Wei Tung ◽  
Jing-Wein Wang

High efficiency video coding (HEVC) is the latest video coding standard. HEVC can achieve higher compression performance than previous standards, such as MPEG-4, H.263, and H.264/AVC. However, HEVC requires enormous computational complexity in encoding process due to quadtree structure. In order to reduce the computational burden of HEVC encoder, an early transform unit (TU) decision algorithm (ETDA) is adopted to pruning the residual quadtree (RQT) at early stage based on the number of nonzero DCT coefficients (called NNZ-EDTA) to accelerate the encoding process. However, the NNZ-ETDA cannot effectively reduce the computational load for sequences with active motion or rich texture. Therefore, in order to further improve the performance of NNZ-ETDA, we propose an adaptive RQT-depth decision for NNZ-ETDA (called ARD-NNZ-ETDA) by exploiting the characteristics of high temporal-spatial correlation that exist in nature video sequences. Simulation results show that the proposed method can achieve time improving ratio (TIR) about 61.26%~81.48% when compared to the HEVC test model 8.1 (HM 8.1) with insignificant loss of image quality. Compared with the NNZ-ETDA, the proposed method can further achieve an average TIR about 8.29%~17.92%.


Sign in / Sign up

Export Citation Format

Share Document