Prediction of electrical power quality disturbances using state estimation techniques

Author(s):  
N. Eassa ◽  
A. Abouelseoud
Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2839
Author(s):  
Artvin-Darien Gonzalez-Abreu ◽  
Miguel Delgado-Prieto ◽  
Roque-Alfredo Osornio-Rios ◽  
Juan-Jose Saucedo-Dorantes ◽  
Rene-de-Jesus Romero-Troncoso

Monitoring electrical power quality has become a priority in the industrial sector background: avoiding unwanted effects that affect the whole performance at industrial facilities is an aim. The lack of commercial equipment capable of detecting them is a proven fact. Studies and research related to these types of grid behaviors are still a subject for which contributions are required. Although research has been conducted for disturbance detection, most methodologies consider only a few standardized disturbance combinations. This paper proposes an innovative deep learning-based diagnosis method to be applied on power quality disturbances, and it is based on three stages. Firstly, a domain fusion approach is considered in a feature extraction stage to characterize the electrical power grid. Secondly, an adaptive pattern characterization is carried out by considering a stacked autoencoder. Finally, a neural network structure is applied to identify disturbances. The proposed approach relies on the training and validation of the diagnosis system with synthetic data: single, double and triple disturbances combinations and different noise levels, also validated with available experimental measurements provided by IEEE 1159.2 Working Group. The proposed method achieves nearly a 100% hit rate allowing a far more practical application due to its capability of pattern characterization.


Author(s):  
Okan Ozgonenel ◽  
◽  
Kubra Nur Akpinar ◽  

Electrical power systems are expected to transmit continuously nominal rated sinusoidal voltage and current to consumers. However, the widespread use of power electronics has brought power quality problems. This study performs classification of power quality disturbances using an artificial neural network (ANN). The most appropriate ANN structure was determined using the Box-Behnken experimental design method. Nine types of disturbance (no fault, voltage sag, voltage, swell, flicker, harmonics, transient, DC component, electromagnetic interference, instant interruption) were investigated in computer simulations. The feature vectors used in the identification of the different types of disturbances were produced using the discrete wavelet transform and principal component analysis. Our results show that the optimized feed forward multilayer ANN structure successfully distinguishes power quality disturbances in simulation data and was also able to identify these disturbances in real time data from substations.


2001 ◽  
Vol 38 (3) ◽  
pp. 210-222 ◽  
Author(s):  
Julio Barros ◽  
Daniel Cando ◽  
Iker Durana

This paper describes a laboratory designed for electrical power quality analysis. Among the different types of disturbances in voltage supply that the laboratory allows us to generate are harmonics, voltage dips and short interruptions in voltage supply, voltage imbalance and frequency deviations. Using this laboratory we can test software for analysis, detection and classification of power quality disturbances and also study their effects on equipment.


2005 ◽  
Vol 2 (2) ◽  
pp. 25
Author(s):  
Noraliza Hamzah ◽  
Wan Nor Ainin Wan Abdullah ◽  
Pauziah Mohd Arsad

Power Quality disturbances problems have gained widespread interest worldwide due to the proliferation of power electronic load such as adjustable speed drives, computer, industrial drives, communication and medical equipments. This paper presents a technique based on wavelet and probabilistic neural network to detect and classify power quality disturbances, which are harmonic, voltage sag, swell and oscillatory transient. The power quality disturbances are obtained from the waveform data collected from premises, which include the UiTM Sarawak, Faculty of Science Computer in Shah Alam, Jati College, Menara UiTM, PP Seksyen 18 and Putra LRT. Reliable Power Meter is used for data monitoring and the data is further processed using the Microsoft Excel software. From the processed data, power quality disturbances are detected using the wavelet technique. After the disturbances being detected, it is then classified using the Probabilistic Neural Network. Sixty data has been chosen for the training of the Probabilistic Neural Network and ten data has been used for the testing of the neural network. The results are further interfaced using matlab script code.  Results from the research have been very promising which proved that the wavelet technique and Probabilistic Neural Network is capable to be used for power quality disturbances detection and classification.


Sign in / Sign up

Export Citation Format

Share Document