Electric field energy harvesting under actual three‐phase 765 kV power transmission lines for wireless sensor node

2017 ◽  
Vol 53 (16) ◽  
pp. 1135-1136 ◽  
Author(s):  
S. Kang ◽  
J. Kim ◽  
S. Yang ◽  
T. Yun ◽  
H. Kim
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


2016 ◽  
Vol 773 ◽  
pp. 012033
Author(s):  
M. A. Cowell ◽  
B. P. Lechene ◽  
P. Raffone ◽  
J. W. Evans ◽  
A. C. Arias ◽  
...  

2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Fariborz Entezami ◽  
Meiling Zhu ◽  
Christos Politis

AbstractThere is a big challenge for research and industrial engineers to apply energy harvesting powered wireless sensors for practical applications. This is because wireless sensors is very power hungry while current energy harvesting systems can only harvest very limited energy from the ambient environment. In order for wireless sensors to be operated based on the limited energy harvested, understanding of power consumption of wireless sensors is the first task for implementation of energy harvesting powered wireless sensors systems. In this research an energy consumption model has been introduced for wireless sensor nodes and the power consumption in the life cycle of wireless communication sensors, consisting of JN5148 microcontroller and custom built sensors: a 3-axial accelerometer, a temperature sensor and a light sensor, has been studied. All measurements are based on a custom-built test bed. The power required carrying out a life cycle of wireless sensing and transmission is analysed. This paper describes how to analyse the current consumption of the system in active mode and thus power Consumption for sleeping and deployed sensors mode. The results show how much energy needs to run the energy harvesting powered wireless sensor node with JN5148 microcontroller.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sławomir Krzewiński ◽  
Paweł Frącz ◽  
Ireneusz Urbaniec ◽  
Tomasz Turba

The paper presents results of comparative analyses of optical signals generated by corona discharges occurring in the vicinity and on the surface of power transmission lines made of five different materials under laboratory conditions. Three aluminium-based materials were chosen: pure aluminium, aluminium with added magnesium, and aluminium with added silicon, and for comparison purposes also, steel-based lines were considered: copper-coated steel and steel with added chromium and nickel. A three-phase triangular arrangement system operating under maximal voltage equal to 110 kV was applied for experimental tests. The optical radiation was registered using a spectrophotometer. During research works, also the influence of corona generation voltage and distance between power lines was investigated. Based on the achieved results, it was stated that the highest corona intensity was found for aluminium-based lines, for both pure aluminium and aluminium with added magnesium and silicon. The lowest corona intensity was observed for chromium- and nickel-alloyed (stainless) steel.


Sign in / Sign up

Export Citation Format

Share Document