Initial conditions and the Laplace transform

1965 ◽  
Vol 11 (11) ◽  
pp. 385
Author(s):  
J.H. Brodie ◽  
C. Jones ◽  
S.E. Tweedy ◽  
E. Besag
1991 ◽  
Vol 45 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Riccardo Croci

The purpose of this paper is to derive the asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter ε goes to zero (the kernel becoming proportional to a Dirac δ function). This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on εx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter.


1965 ◽  
Vol 11 (10) ◽  
pp. 349
Author(s):  
G.K. Steel ◽  
D.J. Storey ◽  
H.M. Power

2021 ◽  
Vol 1 (4) ◽  
pp. 309
Author(s):  
William Guo

<p style='text-indent:20px;'>The Laplace transform is a popular approach in solving ordinary differential equations (ODEs), particularly solving initial value problems (IVPs) of ODEs. Such stereotype may confuse students when they face a task of solving ODEs without explicit initial condition(s). In this paper, four case studies of solving ODEs by the Laplace transform are used to demonstrate that, firstly, how much influence of the stereotype of the Laplace transform was on student's perception of utilizing this method to solve ODEs under different initial conditions; secondly, how the generalization of the Laplace transform for solving linear ODEs with generic initial conditions can not only break down the stereotype but also broaden the applicability of the Laplace transform for solving constant-coefficient linear ODEs. These case studies also show that the Laplace transform is even more robust for obtaining the specific solutions directly from the general solution once the initial values are assigned later. This implies that the generic initial conditions in the general solution obtained by the Laplace transform could be used as a point of control for some dynamic systems.</p>


1965 ◽  
Vol 11 (8) ◽  
pp. 284
Author(s):  
S.E. Tweedy ◽  
A.R. Galanides

2021 ◽  
Vol 14 (1) ◽  
pp. 89-100

Abstract: In this paper, we apply the Homotopy Perturbation Transform Method (HPTM) to obtain the solution of Non-Linear RLC Circuit Equation. This method is a combination of the Laplace transform method with the homotopy perturbation method. The HPTM can provide analytical solutions to nonlinear equations just by employing the initial conditions and the nonlinear term decomposed by using the He’s polynomials. Keywords: Homotopy perturbation, Laplace transform, He’s polynomials, Non-linear RLC circuit equation.


Author(s):  
Amir Khalilollahi ◽  
Enayat Mahajerin ◽  
Gary Burgess

Finite Element Analysis (FEA) and the Laplace Transform-Based Fundamental Collocation Method (FCM) are used to solve the heat diffusion equation in two-dimensional regions having arbitrary shapes and subjected to arbitrary initial and mixed type boundary conditions. In the FEA method, the time derivative is replaced with a finite difference approximation. The resulting time dependent global equations are solved incrementally starting with the initial conditions. The FCM approach is applied in the Laplace transform domain to obtain temperatures in the s-domain, T(x,y,s). An inversion technique is used to retrieve the time domain solution, T(x,y,t). To compare applicability and accuracy of these methods, both techniques are applied to transient heat flow problems for which exact solutions are known.


Author(s):  
Masataka Fukunaga

Abstract The Laplace transform method is one of the powerful tools in studying the frac- tional differential equations (FDEs). In this paper, it is shown that the Heaviside expansion method for integer order differential equations is also applicable to the Laplace transforms of multi-term Caputo fractional differential equations (FDEs) of zero initial conditions if the orders of Caputo derivatives are integer multiples of a common real number. The particular solution of a linear multi-term Caputo FDE is obtained by its Laplace transform and the Heaviside expansion method. A Caputo FDE of non zero initial conditions is transformed to an Caputo FDE of zero initial conditions by an appropriate change of variables. In the latter, the terms originated from the initial conditions appear as nonhomogeneous terms. Thus, the Caputo FDE of nonzero initial conditions is obtained as the particular solutions to the equivalent Caputo FDE of zero initial conditions. The solutions of a linear multi-term Caputo FDEs of nonzero initial conditions are expressed through the two parameter Mittag-Leffler functions.


Sign in / Sign up

Export Citation Format

Share Document