The operational impact to the maintainer (ground crew support and human factors)

Author(s):  
M. Buderath ◽  
N. McDonald ◽  
P. Grommes ◽  
R. Morrison
2020 ◽  
Vol 29 (4) ◽  
pp. 1944-1955 ◽  
Author(s):  
Maria Schwarz ◽  
Elizabeth C. Ward ◽  
Petrea Cornwell ◽  
Anne Coccetti ◽  
Pamela D'Netto ◽  
...  

Purpose The purpose of this study was to examine (a) the agreement between allied health assistants (AHAs) and speech-language pathologists (SLPs) when completing dysphagia screening for low-risk referrals and at-risk patients under a delegation model and (b) the operational impact of this delegation model. Method All AHAs worked in the adult acute inpatient settings across three hospitals and completed training and competency evaluation prior to conducting independent screening. Screening (pass/fail) was based on results from pre-screening exclusionary questions in combination with a water swallow test and the Eating Assessment Tool. To examine the agreement of AHAs' decision making with SLPs, AHAs ( n = 7) and SLPs ( n = 8) conducted an independent, simultaneous dysphagia screening on 51 adult inpatients classified as low-risk/at-risk referrals. To examine operational impact, AHAs independently completed screening on 48 low-risk/at-risk patients, with subsequent clinical swallow evaluation conducted by an SLP with patients who failed screening. Results Exact agreement between AHAs and SLPs on overall pass/fail screening criteria for the first 51 patients was 100%. Exact agreement for the two tools was 100% for the Eating Assessment Tool and 96% for the water swallow test. In the operational impact phase ( n = 48), 58% of patients failed AHA screening, with only 10% false positives on subjective SLP assessment and nil identified false negatives. Conclusion AHAs demonstrated the ability to reliably conduct dysphagia screening on a cohort of low-risk patients, with a low rate of false negatives. Data support high level of agreement and positive operational impact of using trained AHAs to perform dysphagia screening in low-risk patients.


2016 ◽  
Vol 6 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Isaac Munene

Abstract. The Human Factors Analysis and Classification System (HFACS) methodology was applied to accident reports from three African countries: Kenya, Nigeria, and South Africa. In all, 55 of 72 finalized reports for accidents occurring between 2000 and 2014 were analyzed. In most of the accidents, one or more human factors contributed to the accident. Skill-based errors (56.4%), the physical environment (36.4%), and violations (20%) were the most common causal factors in the accidents. Decision errors comprised 18.2%, while perceptual errors and crew resource management accounted for 10.9%. The results were consistent with previous industry observations: Over 70% of aviation accidents have human factor causes. Adverse weather was seen to be a common secondary casual factor. Changes in flight training and risk management methods may alleviate the high number of accidents in Africa.


2014 ◽  
Vol 4 (2) ◽  
pp. 113-121 ◽  
Author(s):  
Stephanie Chow ◽  
Stephen Yortsos ◽  
Najmedin Meshkati

This article focuses on a major human factors–related issue that includes the undeniable role of cultural factors and cockpit automation and their serious impact on flight crew performance, communication, and aviation safety. The report concentrates on the flight crew performance of the Boeing 777–Asiana Airlines Flight 214 accident, by exploring issues concerning mode confusion and autothrottle systems. It also further reviews the vital role of cultural factors in aviation safety and provides a brief overview of past, related accidents. Automation progressions have been created in an attempt to design an error-free flight deck. However, to do that, the pilot must still thoroughly understand every component of the flight deck – most importantly, the automation. Otherwise, if pilots are not completely competent in terms of their automation, the slightest errors can lead to fatal accidents. As seen in the case of Asiana Flight 214, even though engineering designs and pilot training have greatly evolved over the years, there are many cultural, design, and communication factors that affect pilot performance. It is concluded that aviation systems designers, in cooperation with pilots and regulatory bodies, should lead the strategic effort of systematically addressing the serious issues of cockpit automation, human factors, and cultural issues, including their interactions, which will certainly lead to better solutions for safer flights.


1996 ◽  
Vol 41 (1) ◽  
pp. 84-84
Author(s):  
Terri Gullickson ◽  
Pamela Ramser
Keyword(s):  

1977 ◽  
Vol 22 (11) ◽  
pp. 845-845
Author(s):  
IRWIN ALTMAN
Keyword(s):  

1986 ◽  
Vol 31 (11) ◽  
pp. 911-911
Author(s):  
No authorship indicated
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document