Robust decision-making optimization model of household micro-energy system under uncertain environment

2021 ◽  
Author(s):  
G. Jiangliang ◽  
W. Jidong ◽  
S. Huiling
2019 ◽  
Author(s):  
Winda Safitri Caniago ◽  
Hade Afriansyah

Decision making is an action with determine the result in solving problem with choose a rule action between alternative through a mental of process, logic of process and etc. This purpose article is to help make it easier to solve a problem. This article explain some strategy decision making such as optimization model, satisfying model, mixed scanning model, heuristic model, and last the selection of certain model.


2021 ◽  
pp. 1-21
Author(s):  
Jinpei Liu ◽  
Longlong Shao ◽  
Ligang Zhou ◽  
Feifei Jin

Faced with complex decision problems, Distribution linguistic preference relation (DLPR) is an effective way for decision-makers (DMs) to express preference information. However, due to the complexity of the decision-making environment, DMs may not be able to provide complete linguistic distribution for all linguistic terms in DLPRs, which results in incomplete DLPRs. Therefore, in order to solve group decision-making (GDM) with incomplete DLPRs, this paper proposes expected consistency-based model and multiplicative DEA cross-efficiency. For a given incomplete DLPRs, we first propose an optimization model to obtain complete DLPR. This optimization model can evaluate the missing linguistic distribution and ensure that the obtained DLPR has a high consistency level. And then, we develop a transformation function that can transform DLPRs into multiplicative preference relations (MPRs). Furthermore, we design an improved multiplicative DEA model to obtain the priority vector of MPR for ranking all alternatives. Finally, a numerical example is provided to show the rationality and applicability of the proposed GDM method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jianfei Ye ◽  
Huimin Ma

In order to solve the joint optimization of production scheduling and maintenance planning problem in the flexible job-shop, a multiobjective joint optimization model considering the maximum completion time and maintenance costs per unit time is established based on the concept of flexible job-shop and preventive maintenance. A weighted sum method is adopted to eliminate the index dimension. In addition, a double-coded genetic algorithm is designed according to the problem characteristics. The best result under the circumstances of joint decision-making is obtained through multiple simulation experiments, which proves the validity of the algorithm. We can prove the superiority of joint optimization model by comparing the result of joint decision-making project with the result of independent decision-making project under fixed preventive maintenance period. This study will enrich and expand the theoretical framework and analytical methods of this problem; it provides a scientific decision analysis method for enterprise to make production plan and maintenance plan.


Sign in / Sign up

Export Citation Format

Share Document