Parallel optimisation of time-varying adaptive algorithms for interference cancellation in code division multiple access systems

2010 ◽  
Vol 4 (16) ◽  
pp. 1963 ◽  
Author(s):  
K. Shahtalebi ◽  
G. Bakhshi ◽  
H. Saligheh Rad
Author(s):  
Younes Jabrane ◽  
Radouane Iqdour ◽  
Brahim Ait Es Said ◽  
Najib Naja

The steeping chip weighting waveforms are used in multiple access interference cancellation by emphasizing the received spreading signal, therefore, that allows to solve the problem of orthogonality for the chip waveforms. Our paper presents a useful method based on fuzzy systems to determine the despreading sequences weighted by the steeping chip weighting waveforms for Direct Sequence Code Division Multiple Access DS/CDMA. The validity of our proposed method has been tested by numerical examples for an Additive White Gaussian Noise channels and shows that the parameter values of the chip weighting waveforms are good and the Bit Error Rate performance of the system does not undergone any degradation.


2016 ◽  
Vol 37 (2) ◽  
Author(s):  
N. Alsowaidi ◽  
Tawfig Eltaif ◽  
M. R. Mokhtar

AbstractIn this paper we introduce a successive interference cancellation (SIC) scheme for direct sequence optical code division multiple access (DS-OCDMA) systems using pulse position modulation (PPM). Considering double-padded modified prime code (DPMPC) as a signature sequence code, results show that the system has better performance in terms of both capacity and bit error rate (BER) as compared to the one without cancellation scheme, where the system with SIC scheme can support up to 88 users while the system without SIC scheme can support only 38 users at similar BER=10


Sign in / Sign up

Export Citation Format

Share Document