Enhanced copy–paste forgery detection in digital images using scale-invariant feature transform

2020 ◽  
Vol 14 (3) ◽  
pp. 462-471 ◽  
Author(s):  
Priyadharsini Selvaraj ◽  
Muneeswaran Karuppiah
Author(s):  
Marziye Shahrokhi ◽  
Alireza Akoushideh ◽  
Asadollah Shahbahrami

Today, manipulating, storing, and sending digital images are simple and easy because of the development of digital imaging devices from hardware and software points of view. Digital images are used in different contexts of people’s lives such as news, forensics, and so on. Therefore, the reliability of received images is a question that often occupies the viewer’s mind and the authenticity of digital images is increasingly important. Detecting a forged image as a genuine one as well as detecting a genuine image as a forged one can sometimes have irreparable consequences. For example, an image that is available from the scene of a crime can lead to a wrong decision if it is detected incorrectly. In this paper, we propose a combination method to improve the accuracy of copy–move forgery detection (CMFD) reducing the false positive rate (FPR) based on texture attributes. The proposed method uses a combination of the scale-invariant feature transform (SIFT) and local binary pattern (LBP). Consideration of texture features around the keypoints detected by the SIFT algorithm can be effective to reduce the incorrect matches and improve the accuracy of CMFD. In addition, to find more and better keypoints some pre-processing methods have been proposed. This study was evaluated on the COVERAGE, GRIP, and MICC-F220 databases. Experimental results show that the proposed method without clustering or segmentation and only with simple matching operations, has been able to earn the true positive rates of 98.75%, 95.45%, and 87% on the GRIP, MICC-F220, and COVERAGE datasets, respectively. Also, the proposed method, with FPRs from 17.75% to 3.75% on the GRIP dataset, has been able to achieve the best results.


2018 ◽  
Vol 1 (1) ◽  
pp. 20-27
Author(s):  
Rosidin Al Caruban ◽  
Bambang Sugiantoro ◽  
Yudi Prayudi

Through using tools of image processing on digital images just like gimp and adobe photoshop applications, an image on digital images can be a source of information for anyone who observes it. On one hand, those applications can easily change or manipulate the authenticity of the image. On the other hand, they can be misused to undermine the credibility of the authenticity of the image in various aspects. Thus, they can be considered as a crime. The implementation of the SIFT Algorithm (Scale Invariant feature transform) and RGB color histogram in Matlab can detect object fitness in digital images and perform accurate test. This study discusses the implementation of getting object fitness on digital image that has been manipulated by SIFT Algorithm method on the Matlab source. It is done by comparing the original image with the manipulated one. The object fitness in digital images can be obtained from a number of key points and other additional parameters through comparing number of pixels on the analyzed image and on the changed histogram in RGB color on each analyzed image. The digital image forensics which is known as one of the scientific methods commonly used in researches is aimed to obtain evidences or facts in determining the authenticity of the image on digital images. The use of the SIFT algorithm is chosen as an extraction method because it is invariant to scale, rotation, translation, and illumination changes. SIFT is used to obtain characteristics of the pattern of the gained key point. The tested result of the SIFT Algorithm method (Scale Invariant feature transform) is expected to produce a better image analysis.


Sign in / Sign up

Export Citation Format

Share Document