Autonomous grid‐synchronising control of VSC‐HVDC with real‐time frequency mirroring capability for wind farm integration

2018 ◽  
Vol 12 (13) ◽  
pp. 1572-1580 ◽  
Author(s):  
Renxin Yang ◽  
Chen Zhang ◽  
Xu Cai ◽  
Gang Shi
2013 ◽  
Vol 333-335 ◽  
pp. 650-655
Author(s):  
Peng Hui Niu ◽  
Yin Lei Qin ◽  
Shun Ping Qu ◽  
Yang Lou

A new signal processing method for phase difference estimation was proposed based on time-varying signal model, whose frequency, amplitude and phase are time-varying. And then be applied Coriolis mass flowmeter signal. First, a bandpass filtering FIR filter was applied to filter the sensor output signal in order to improve SNR. Then, the signal frequency could be calculated based on short-time frequency estimation. Finally, by short window intercepting, the DTFT algorithm with negative frequency contribution was introduced to calculate the real-time phase difference between two enhanced signals. With the frequency and the phase difference obtained, the time interval of two signals was calculated. Simulation results show that the algorithms studied are efficient. Furthermore, the computation of algorithms studied is simple so that it can be applied to real-time signal processing for Coriolis mass flowmeter.


2013 ◽  
Vol 93 (5) ◽  
pp. 1392-1397 ◽  
Author(s):  
Ljubiša Stanković ◽  
Miloš Daković ◽  
Thayananthan Thayaparan

Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Real-time optimization of wind farm energy capture for below rated wind speed is critical for reducing the levelized cost of energy (LCOE). Performance of model based control and optimization techniques can be significantly limited by the difficulty in obtaining accurate turbine and farm models in field operation, as well as the prohibitive cost for accurate wind measurements. The Nested-Loop Extremum Seeking Control (NLESC), recently proposed as a model free method has demonstrated its great potential in wind farm energy capture optimization. However, a major limitation of previous work is the slow convergence, for which a primary cause is the low dither frequencies used by upwind turbines, primarily due to wake propagation delay through the turbine array. In this study, NLESC is enhanced with the predictor based delay compensation proposed by Oliveira and Krstic [1], which allows the use of higher dither frequencies for upwind turbines. The convergence speed can thus be improved, increasing the energy capture consequently. Simulation study is performed for a cascaded three-turbine array using the SimWindFarm platform. Simulation results show the improved energy capture of the wind turbine array under smooth and turbulent wind conditions, even up to 10% turbulence intensity. The impact of the proposed optimization methods on the fatigue loads of wind turbine structures is also evaluated.


2021 ◽  
Vol 701 (1) ◽  
pp. 012083
Author(s):  
J F Wang ◽  
C F Chen ◽  
S Zhang ◽  
Z Ren ◽  
X L Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document