Notice of Retraction: Research on Active Power Real-Time Dispatching of Wind Farm Integration

Author(s):  
Qian Chen ◽  
Lingfeng Kong ◽  
Jianqun Mei ◽  
Chaoming Wang
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Real-time optimization of wind farm energy capture for below rated wind speed is critical for reducing the levelized cost of energy (LCOE). Performance of model based control and optimization techniques can be significantly limited by the difficulty in obtaining accurate turbine and farm models in field operation, as well as the prohibitive cost for accurate wind measurements. The Nested-Loop Extremum Seeking Control (NLESC), recently proposed as a model free method has demonstrated its great potential in wind farm energy capture optimization. However, a major limitation of previous work is the slow convergence, for which a primary cause is the low dither frequencies used by upwind turbines, primarily due to wake propagation delay through the turbine array. In this study, NLESC is enhanced with the predictor based delay compensation proposed by Oliveira and Krstic [1], which allows the use of higher dither frequencies for upwind turbines. The convergence speed can thus be improved, increasing the energy capture consequently. Simulation study is performed for a cascaded three-turbine array using the SimWindFarm platform. Simulation results show the improved energy capture of the wind turbine array under smooth and turbulent wind conditions, even up to 10% turbulence intensity. The impact of the proposed optimization methods on the fatigue loads of wind turbine structures is also evaluated.


2013 ◽  
Vol 291-294 ◽  
pp. 536-540 ◽  
Author(s):  
Xin Wei Wang ◽  
Jian Hua Zhang ◽  
Cheng Jiang ◽  
Lei Yu

The conventional deterministic methods have been unable to accurately assess the active power output of the wind farm being the random and intermittent of wind power, and the probabilistic methods commonly used to solve this problem. In this paper the multi-state fault model is built considering run, outage and derating state of wind turbine, and then the reliability model of the wind farm is established considering the randomness of the wind speed, the wind farm wake effects and turbine failure. The active wind farm output probability assessment methods and processes based on the Monte Carlo method. The related programs are written in MATLAB, and the probability assessment for active power output of a wind farm in carried out, the effectiveness and adaptability of built reliability models and assessment methods are illustrated by analysis of the effects of reliability parameters and model parameters on assessment results.


Sign in / Sign up

Export Citation Format

Share Document