Locally adaptive wavelet domain Bayesian processor for denoising medical ultrasound images using Speckle modelling based on Rayleigh distribution

2005 ◽  
Vol 152 (1) ◽  
pp. 129 ◽  
Author(s):  
S. Gupta ◽  
R.C. Chauhan ◽  
S.C. Saxena
2019 ◽  
Vol 28 (10) ◽  
pp. 1950176 ◽  
Author(s):  
P. Sreelatha ◽  
M. Ezhilarasi

Informative images endure from poor contrast and noise during image acquisition. Significant information retrieval necessitates image contrast enhancement and removal of noise as a prerequisite before any further processing can be done. Dominant applications with low contrast images affected by speckle noise are medical ultrasound images. The objective of this work is to improve the effectiveness of the preprocessing stage in medical ultrasound images by enhancing the image while retaining its structural characteristics. For image enhancement, this work proposes to develop an automatic contrast enhancement technique using cumulative histogram equalization and gamma correction based on the image. For noise removal, this work proposes an algorithm Gamma Correction with Exponentially Adaptive Threshold (GCEAT) which suggests the use of GC for contrast enhancement along with a new wavelet-based adaptive soft thresholding technique for noise removal. The proposed GCEAT-based image de-noising is validated with other enhancement and noise removal techniques. Experimental results with low contrast synthetic and actual ultrasound images show that the suggested proposed system performs better than existing contrast enhancement techniques. Encouraging results were obtained with medical ultrasound images in terms of Peak-Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity Index Measure (SSIM) and Average Intensity (AI).


2008 ◽  
Vol 55 (9) ◽  
pp. 2152-2160 ◽  
Author(s):  
Hossein Rabbani ◽  
Mansur Vafadust ◽  
Purang Abolmaesumi ◽  
Saeed Gazor

2012 ◽  
Vol 6 (5) ◽  
pp. 580 ◽  
Author(s):  
M. Amirmazlaghani ◽  
H. Amindavar

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barmak Honarvar Shakibaei Asli ◽  
Yifan Zhao ◽  
John Ahmet Erkoyuncu

AbstractHigh-quality medical ultrasound imaging is definitely concerning motion blur, while medical image analysis requires motionless and accurate data acquired by sonographers. The main idea of this paper is to establish some motion blur invariant in both frequency and moment domain to estimate the motion parameters of ultrasound images. We propose a discrete model of point spread function of motion blur convolution based on the Dirac delta function to simplify the analysis of motion invariant in frequency and moment domain. This model paves the way for estimating the motion angle and length in terms of the proposed invariant features. In this research, the performance of the proposed schemes is compared with other state-of-the-art existing methods of image deblurring. The experimental study performs using fetal phantom images and clinical fetal ultrasound images as well as breast scans. Moreover, to validate the accuracy of the proposed experimental framework, we apply two image quality assessment methods as no-reference and full-reference to show the robustness of the proposed algorithms compared to the well-known approaches.


Sign in / Sign up

Export Citation Format

Share Document