scholarly journals Low‐light image enhancement based on Retinex decomposition and adaptive gamma correction

2020 ◽  
Author(s):  
Jingyu Yang ◽  
Yuwei Xu ◽  
Huanjing Yue ◽  
Zhongyu Jiang ◽  
Kun Li
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 746
Author(s):  
Shouxin Liu ◽  
Wei Long ◽  
Lei He ◽  
Yanyan Li ◽  
Wei Ding

We proposed the Retinex-based fast algorithm (RBFA) to achieve low-light image enhancement in this paper, which can restore information that is covered by low illuminance. The proposed algorithm consists of the following parts. Firstly, we convert the low-light image from the RGB (red, green, blue) color space to the HSV (hue, saturation, value) color space and use the linear function to stretch the original gray level dynamic range of the V component. Then, we estimate the illumination image via adaptive gamma correction and use the Retinex model to achieve the brightness enhancement. After that, we further stretch the gray level dynamic range to avoid low image contrast. Finally, we design another mapping function to achieve color saturation correction and convert the enhanced image from the HSV color space to the RGB color space after which we can obtain the clear image. The experimental results show that the enhanced images with the proposed method have better qualitative and quantitative evaluations and lower computational complexity than other state-of-the-art methods.


2021 ◽  
Author(s):  
Zhuqing Jiang ◽  
Haotian Li ◽  
Liangjie Liu ◽  
Aidong Men ◽  
Haiying Wang

2021 ◽  
Vol 11 (11) ◽  
pp. 5055
Author(s):  
Hong Liang ◽  
Ankang Yu ◽  
Mingwen Shao ◽  
Yuru Tian

Due to the characteristics of low signal-to-noise ratio and low contrast, low-light images will have problems such as color distortion, low visibility, and accompanying noise, which will cause the accuracy of the target detection problem to drop or even miss the detection target. However, recalibrating the dataset for this type of image will face problems such as increased cost or reduced model robustness. To solve this kind of problem, we propose a low-light image enhancement model based on deep learning. In this paper, the feature extraction is guided by the illumination map and noise map, and then the neural network is trained to predict the local affine model coefficients in the bilateral space. Through these methods, our network can effectively denoise and enhance images. We have conducted extensive experiments on the LOL datasets, and the results show that, compared with traditional image enhancement algorithms, the model is superior to traditional methods in image quality and speed.


Sign in / Sign up

Export Citation Format

Share Document