scholarly journals Quasilinear approach of the cumulative whistler instability in fast solar wind: Constraints of electron temperature anisotropy

2019 ◽  
Vol 627 ◽  
pp. A76 ◽  
Author(s):  
S. M. Shaaban ◽  
M. Lazar ◽  
P. H. Yoon ◽  
S. Poedts

Context. Solar outflows are a considerable source of free energy that accumulates in multiple forms such as beaming (or drifting) components, or temperature anisotropies, or both. However, kinetic anisotropies of plasma particles do not grow indefinitely and particle-particle collisions are not efficient enough to explain the observed limits of these anisotropies. Instead, self-generated wave instabilities can efficiently act to constrain kinetic anisotropies, but the existing approaches are simplified and do not provide satisfactory explanations. Thus, small deviations from isotropy shown by the electron temperature (T) in fast solar winds are not explained yet. Aims. This paper provides an advanced quasilinear description of the whistler instability driven by the anisotropic electrons in conditions typical for the fast solar winds. The enhanced whistler-like fluctuations may constrain the upper limits of temperature anisotropy A ≡ T⊥/T∥ >  1, where ⊥, ∥ are defined with respect to the magnetic field direction. Methods. We studied self-generated whistler instabilities, cumulatively driven by the temperature anisotropy and the relative (counter)drift of electron populations, for example, core and halo electrons. Recent studies have shown that quasi-stable states are not bounded by linear instability thresholds but an extended quasilinear approach is necessary to describe these quasi-stable states in this case. Results. Marginal conditions of stability are obtained from a quasilinear theory of cumulative whistler instability and approach the quasi-stable states of electron populations reported by the observations. The instability saturation is determined by the relaxation of both the temperature anisotropy and relative drift of electron populations.

1985 ◽  
Vol 90 (A8) ◽  
pp. 7607-7610 ◽  
Author(s):  
S. Peter Gary ◽  
Christian D. Madland

1981 ◽  
Vol 50 (6) ◽  
pp. 1821-1822
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata ◽  
Kazuhiko Tanabe

1998 ◽  
Vol 5 (2) ◽  
pp. 111-120 ◽  
Author(s):  
E. Marsch

Abstract. Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame) of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering) with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component) velocity distribution functions (VDFs), as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.


1970 ◽  
Vol 4 (1) ◽  
pp. 21-41 ◽  
Author(s):  
C. Montes ◽  
J. Coste ◽  
G. Diener

We study the quasifinear relaxation of an aperiodic instability, namely the instability caused by the temperature anisotropy of a collisionless electron plasma in the absence of an external magnetic field. We give a detailed description of the relaxation process and we examine the validity of the quasilinear theory (existence of separate time scales, quasilinearity of the particles' orbits).


Sign in / Sign up

Export Citation Format

Share Document