scholarly journals Globular clusters in the Sagittarius stream

2020 ◽  
Vol 636 ◽  
pp. A107 ◽  
Author(s):  
M. Bellazzini ◽  
R. Ibata ◽  
K. Malhan ◽  
N. Martin ◽  
B. Famaey ◽  
...  

We reconsider the case for the association of Galactic globular clusters to the tidal stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Gaia DR2 data. We used RR Lyrae variables to trace the stream in 6D and we selected clusters matching the observed stream in position and velocity. In addition to the clusters residing in the main body of the galaxy (M 54, Ter 8, Ter 7, Arp 2) we confirm the membership of Pal 12 and Whiting 1 to the portion of the trailing arm populated by stars lost during recent perigalactic passages. NGC 2419, NGC 5634, and NGC 4147 are very interesting candidates, possibly associated with more ancient wraps of the Sagittarius stream. With the exception of M 54, which lies within the stellar nucleus of the galaxy, we note that all these clusters are found in the trailing arm of the stream. The selected clusters are fully consistent with the [Fe/H] versus [Mg/Fe], [Ca/Fe] patterns and the age-metallicity relation displayed by field stars in the main body of Sgr dSph.

2005 ◽  
Vol 437 (3) ◽  
pp. 1017-1021 ◽  
Author(s):  
M. Castellani ◽  
V. Castellani ◽  
S. Cassisi

1995 ◽  
Vol 155 ◽  
pp. 209-220
Author(s):  
Michael Feast

AbstractThe current Cepheid zero-point is equivalent to an LMC distance modulus of 18.57 ± 0.10. The zero-point from corrected Baade-Wesselink data is probably not significantly different from this. A reexamination of the Baade-Wesselink data for RR Lyrae variables leads to an LMC modulus of 18.51, an age difference between β- and α-group galactic globular clusters of +1.46±0.70 Gyr, and an Mv - [Fe/H] slope in agreement with theory. Other questions discussed include; Avoiding bias in using the Cepheid PL relation; Metallicity spread amongst Cepheids; Cepheids and Ho.


1994 ◽  
Vol 161 ◽  
pp. 453-459 ◽  
Author(s):  
M. Odenkirchen ◽  
R.-D. Scholz ◽  
M.J. Irwin

We present results from orbit integrations for the globular clusters M 3 and M 92. Absolute proper motions recently measured from Tautenburg Schmidt plates and a three-component mass model for the Galaxy have been used to derive the galactic orbits of these clusters. Orbital parameters and the influence of observational uncertainties on the determination of the orbits are discussed.


1996 ◽  
Vol 165 ◽  
pp. 389-400
Author(s):  
Helen M. Johnston ◽  
Frank Verbunt ◽  
Günther Hasinger ◽  
Wolfram Bunk

X-ray sources in globular clusters fall into two categories: the “bright” sources, with LX ∼ 1036-1038 erg s−1, and the “dim” sources, with LX ≲ 1034.5 erg s−1. The bright sources are clearly associated with accreting neutron stars in binary systems. The nature of the dim sources, however, remains in doubt. We review recent observations of globular-cluster X-ray sources with the ROSAT satellite. ROSAT detected bright sources in M31 globular clusters and greatly increased the number of dim sources known in galactic globular clusters. We discuss what these new observations have taught us about the distribution and nature of such sources, their spectral properties, and their underlying luminosity function.


1995 ◽  
Vol 164 ◽  
pp. 405-405 ◽  
Author(s):  
R.-D. Scholz ◽  
S. Hirte ◽  
M.J. Irwin ◽  
M. Odenkirchen

From measurements of Tautenburg Schmidt plates with the APM facility in Cambridge we obtained absolute proper motions of the Galactic globular clusters M 3 and M 92 directly with respect to large numbers of background galaxies (Scholz et al. 1993, 1994). We have extended our work to the dSphs in Draco and Ursa Minor (Scholz & Irwin 1994) and to other Galactic globular clusters using Tautenburg, Palomar and UK Schmidt plates. Combining our absolute proper motion of a cluster with its known radial velocity and distance (using common parameters of the solar motion) we derive the cluster orbit in the Galaxy (cf. Odenkirchen & Brosche 1992).


2003 ◽  
Vol 596 (1) ◽  
pp. 299-313 ◽  
Author(s):  
M. Marconi ◽  
F. Caputo ◽  
M. Di Criscienzo ◽  
M. Castellani

2000 ◽  
Vol 176 ◽  
pp. 263-263
Author(s):  
Vincenzo Ripepi ◽  
Filippina Caputo ◽  
Vittorio Castellani ◽  
Marcella Marconi

AbstractWe applied the pulsational method (Caputo 1997) to derive the distances to a sample of galactic globular clusters with well-observed RR Lyrae populations. To apply the method we calculated a set of pulsational theoretical boundaries of the instability strip for the range of masses and chemical compositions spanned by the analysed clusters. In this way we were able to fix simultaneously the apparent distance modulus and the absolute visual magnitude of the RR Lyrae population of each cluster in the sample. As a result we derived the following relations:


1977 ◽  
Vol 37 ◽  
pp. 301-307
Author(s):  
G. de Vaucouleurs

AbstractThe correct approach to build up the extragalactic distance scale is to use all available primary (novae, cepheids, RR Lyrae) and secondary indicators (brightest stars, globular clusters, largest HII rings) to calibrate without arbitrary extrapolation all reliable tertiary indicators (magnitudes and diameters of galaxies), precisely corrected for all known effects of type, luminosity class, orientation, internal and galactic extinction and redshift. Such data are now available for over 1000 galaxies in the Second Reference Catalogue.Revised distances to members of the Local Group from primary indicators and new estimates of distances to the nearest groups from primary and secondary indicators are used to calibrate the tertiary indicators via a new, composite luminosity index.The distances derived from globular clusters for 3 galaxy clusters dominated by ellipticals (Vir I, For I, Hya I) with mean corrected velocities 1000 ≤ Vo ≤ 3650 km s-1 give a mean Hubble ratio <H> = 88 (1 ± 0.15) km s-1 Mpc-1. This value rests entirely on the calibration of the globular clusters luminosity function in the Galaxy as a gaussian of dispersion σ = 1.1 mag. and mean <MB>(⊕) = -6.55, with <(B-V)o > = 0.75, based on the adopted RR Lyrae zero point <Mv> (RR) = + 0.86 ± 0.15.The distances derived from tertiary indicators to 19 field spirals and 28 nearby groups dominated by spirals with corrected velocities Vo < 1800 km s-1 give <H> = 82 (1 ± 0.15) km s-1 Mpc-1. This value rests on the relations between luminosity index and fully corrected absolute magnitudes or linear diameters of galaxies derived without extrapolation and calibrated in ~20 nearby galaxies by seven secondary indicators. The zero points were derived from the 3 primary indicators, including 15 galactic novae with <M15> = -5.5 ± 0.15, and 13 cepheids in 8 galactic clusters with <MB> (logPo = 0.8) = -2.92 ± 0.15 (for an adopted Hyades modulus of 3.16 ± 0.05).The low values of Ho≃50 to 55 can be explained by an accumulation of complex systematic errors arising from a multiplicity of sources. These errors, all but one acting in the same sense, have been identified and evaluated; a full report will appear elsewhere.


Sign in / Sign up

Export Citation Format

Share Document