tidal stream
Recently Published Documents





2022 ◽  
Vol 246 ◽  
pp. 110431
Jisheng Zhang ◽  
Can Zhang ◽  
Athanasios Angeloudis ◽  
Stephan C. Kramer ◽  
Rui He ◽  

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8504
Peter Osman ◽  
Jennifer A. Hayward ◽  
Irene Penesis ◽  
Philip Marsh ◽  
Mark A. Hemer ◽  

The global tidal energy resource for electricity generation is small, and converting tidal kinetic energy to electricity is expensive compared to solar-photovoltaic or land-based wind turbine generators. However, as the renewable energy content in electricity supplies grows, the need to stabilise these supplies increases. This paper describes tidal energy’s potential to reduce intermittency and variability in electricity supplied from solar and wind power farms while lowering the capital expenditure needed to improve dispatchability. The paper provides a model and hypothetical case studies to demonstrate how sharing energy storage between tidal stream power generators and wind or solar power generators can mitigate the level, frequency, and duration of power loss from wind or solar PV farms. The improvements in dispatchability use tidal energy’s innate regularity and take account of tidal asymmetry and extended duration low-velocity neap tides. The case studies are based on a national assessment of Australian tidal energy resources carried out from 2018 to 2021.

D.M. Fouz ◽  
R. Carballo ◽  
I. López ◽  
G. Iglesias

2021 ◽  
Vol 104 (10) ◽  
Joseph Rossi ◽  
Juan Servin ◽  
Michael Kesden

2021 ◽  
Simon Warder ◽  
Athanasios Angeloudis ◽  
Matthew Piggott

Accurately representing the bottom friction effect is a significant challenge in numerical tidal models. Bottom friction effects are commonly defined via parameter estimation techniques. However, the bottom friction coefficient (BFC) can be related to the roughness of the sea bed. Therefore, sedimentological data can be beneficial in estimating BFCs. Taking the Bristol Channel and Severn Estuary as a case study, we perform a number of BFC parameter estimation experiments, utilising sedimentological data in a variety of ways. Model performance is explored through the results of each parameter estimation experiment, including applications to tidal range and tidal stream resource assessment. We find that theoretically derived sediment-based BFCs are in most cases detrimental to model performance. However, good performance is obtained by retaining the spatial information provided by the sedimentological data in the formulation of the parameter estimation experiment; the spatially varying BFC can be represented as a piecewise-constant field following the spatial distribution of the observed sediment types. By solving the resulting low-dimensional parameter estimation problem, we obtain good model performance as measured against tide gauge data. This approach appears well suited to modelling tidal range energy resource, which is of particular interest in the case study region. However, the applicability of this approach for tidal stream resource assessment is limited, since modelled tidal currents exhibit a strong localised response to the BFC; the use of piecewise-constant (and therefore discontinuous) BFCs is found to be detrimental to model performance for tidal currents.

Sign in / Sign up

Export Citation Format

Share Document