scholarly journals Isotope effect on the sublimation curves and binding energies of 12CO and 13CO interstellar ice analogs

Author(s):  
L. R. Smith ◽  
M. S. Gudipati ◽  
R. L. Smith ◽  
R. D. Lewis
2018 ◽  
Vol 20 (13) ◽  
pp. 8753-8764 ◽  
Author(s):  
Eric Michoulier ◽  
Jennifer A. Noble ◽  
Aude Simon ◽  
Joëlle Mascetti ◽  
Céline Toubin

The present work represents a complete description of PAH–ice interaction in the ground electronic state and at low temperature, providing the binding energies and barrier heights necessary to the ongoing improvement of astrochemical models.


2014 ◽  
Vol 441 ◽  
pp. 101-108 ◽  
Author(s):  
Taro Udagawa ◽  
Takayoshi Ishimoto ◽  
Masanori Tachikawa

Author(s):  
Denis Duflot ◽  
Céline Toubin ◽  
Maurice Monnerville

The adsorption of a series of atoms and small molecules and radicals (H, C, N, O, NH, OH, H2O, CH3, and NH3) on hexagonal crystalline and amorphous ice clusters were obtained via classical molecular dynamics and electronic structure methods. The geometry and binding energies were calculated using a QMHigh:QMLow hybrid method on model clusters. Several combination of basis sets, density functionals and semi-empirical methods were compared and tested against previous works. More accurate binding energies were also refined via single point Coupled Cluster calculations. Most species, except carbon atom, physisorb on the surface, leading to rather small binding energies. The carbon atom forms a COH2 molecule and in some cases leads to the formation of a COH-H3O+ complex. Amorphous ices are characterized by slightly stronger binding energies than the crystalline phase. A major result of this work is to also access the dispersion of the binding energies since a variety of adsorption sites is explored. The interaction energies thus obtained may serve to feed or refine astrochemical models. The present methodology could be easily extended to other types of surfaces and larger adsorbates.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.F. Blake ◽  
LJ. Allamandola ◽  
G. Palmer ◽  
A. Pohorille

The natural history of the biogenic elements H, C, N, O, P and S in the cosmos is of great interest because it is these elements which comprise all life. Material ejected from stars (or pre-existing in the interstellar medium) is thought to condense into diffuse bodies of gravitationally bound gas and dust called cold interstellar molecular clouds. Current theories predict that within these clouds, at temperatures of 10-100° K, gases (primarily H2O, but including CO, CO2, CH3OH, NH3, and others) condense onto submicron silicate grains to form icy grain mantles. This interstellar ice represents the earliest and most primitive association of the biogenic elements. Within these multicomponent icy mantles, pre-biotic organic compounds are formed during exposure to UV radiation. It is thought that icy planetesimals (such as comets) within our solar system contain some pristine interstellar material, including ices, and may have (during the early bombardment of the solar system, ∼4 Ga) carried this material to Earth.Despite the widespread occurrence of astrophysical ices and their importance to pre-biotic organic evolution, few experimental data exist which address the relevant phase equilibria and possible structural states. A knowledge of the petrology of astrophysical ice analogs will allow scientists to more confidently interpret astronomical IR observations. Furthermore, the development and refinement of procedures for analyzing ices and other materials at cryogenic temperatures is critical to the study of materials returned from the proposed Rosetta comet nucleus and Mars sample return missions.


1998 ◽  
Vol 93 (5) ◽  
pp. 801-807
Author(s):  
JOACHIM SCHULTE ◽  
MICHAEL BOHM ◽  
RAFAEL RAMIREZ

1993 ◽  
Vol 3 (3) ◽  
pp. 871-885 ◽  
Author(s):  
P. Auban-Senzier ◽  
C. Bourbonnais ◽  
D. Jérome ◽  
C. Lenoir ◽  
P. Batail ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document