adsorption sites
Recently Published Documents





Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Chu-Chin Hsieh ◽  
Jyong-Sian Tsai ◽  
Hwo-Shuenn Sheu ◽  
Jen-Ray Chang

V2O5/NaY-SiO2 adsorbents were prepared by soaking up vanadium oxalate precursors into pellet NaY-SiO2. The NaY-SiO2 supports were prepared from NaY-SiO2 dough followed by extrusion and calcination at 450 °C. Ethanol was used as a model adsorbate to test the performance of the adsorbents. The regeneration efficacy, defined as the ratio of the adsorption capacity of a regenerated adsorbent to that of the fresh adsorbent, was investigated through the dynamics of fixed-bed adsorption (breakthrough curve). TPO, DSC, and FT-IR were used to characterize carbonaceous species on the adsorbents; meanwhile, synchrotron XRPD, XAS, and the N2 isotherm were used to characterize the zeolite, vanadia structure, and surface area, respectively. The results indicated that in low temperature (300 °C) regeneration, adsorption sites covered by alkylated aromatic coke formed during regeneration, causing adsorbent deactivation. In contrast, during regeneration at a high temperature (450 °C), the deactivation was caused by the destruction of the NaY framework concomitant with channel blockage, as suggested by the BET surface area combined with Rietvelt XRPD refinement results. In addition, the appearance of V-O-V contribution in the EXAFS spectra indicated the aggregation of isolated VO4, which led to a decrease in the combustion rate of the carbonaceous species deposited on the adsorbents. For regeneration at 350 and 400 °C, only trace coke formation and minor structural destruction were observed. Long-term life tests indicated that regeneration at 400 °C presents a higher maintenance of stability.

2022 ◽  
Vol 9 ◽  
Carrington Moore ◽  
Difan Zhang ◽  
Roger Rousseau ◽  
Vassiliki-Alexandra Glezakou ◽  
Jean-Sabin McEwen

As climate change continues to pose a threat to the Earth due to the disrupted carbon cycles and fossil fuel resources remain finite, new sources of sustainable hydrocarbons must be explored. 2,3-butanediol is a potential source to produce butene because of its sustainability as a biomass-derived sugar. Butene is an attractive product because it can be used as a precursor to jet fuel, categorizing this work in the alcohol-to-jet pathway. While studies have explored the conversion of 2,3-butanediol to butene, little is understood about the fundamental reaction itself. We quantify the energetics for three pathways that were reported in the literature in the absence of a catalyst. One of these pathways forms a 1,3-butadiene intermediate, which is a highly exothermic process and thus is unlikely to occur since 2,3-butanediol likely gets thermodynamically trapped at this intermediate. We further determined the corresponding energetics of 2,3-butanediol adsorption on an ensemble of predetermined binding sites when it interacts with a defect-free stoichiometric RuO2(110) surface. Within this ensemble of adsorption sites, the most favorable site has 2,3-butanediol covering a Ru 5–coordinated cation. This approach is compared to that obtained using the global optimization algorithm as implemented in the Northwest Potential Energy Surface Search Engine. When using such a global optimization algorithm, we determined a more favorable ground-state structure that was missed during the manual adsorption site testing, with an adsorption energy of −2.61 eV as compared to −2.34 eV when using the ensemble-based approach. We hypothesize that the dehydration reaction requires a stronger chemical bond, which could necessitate the formation of oxygen vacancies. As such, this study has taken the first step toward the utilization of a global optimization algorithm for the rational design of Ru-based catalysts toward the formation of butene from sustainable resources.

Henry J. Sokol ◽  
Amani M. Ebrahim ◽  
Stavros Caratzoulas ◽  
Anatoly I. Frenkel ◽  
Julia A. Valla

2022 ◽  
Qiushi Li ◽  
Ganmao Su ◽  
Ronggang Luo ◽  
Guanben Du ◽  
Linkun Xie ◽  

Abstract The rapid global industrialization worsens the contamination of heavy metals in aquatic ecosystems on the earth. In this study, the green, ultrafine cellulose-based porous nanofibrous membranes for efficient heavy metal removal through incorporation of chitosan by the conventional and core-shell electrospinning ways were firstly obtained. The relations among parameters of electrospun solution, micro-morphology and porosity for nanofibers, the variation of chemical active sites and adsorption performance of biocomposite nanofibrous membranes for conventional and core-shell electrospinning as well as the adsorption effect factors of copper ions including initial concentration, pH of solution and interaction time were comprehensively investigated. The results show that the average diameter for conventional and core-shell ultrafine nanofibers at 50% chitosan and 30% chitosan loading can achieve 56.22 nm and 37.28 nm, respectively. The core-shell cellulose acetate/chitosan (CA/CS) biocomposite nanofibrous membranes induced the surface aggregation of copper ions to impede the further adsorption. The more uniform distribution for chemical adsorption sites can be obtained by the conventional single-nozzle electrospinning than by the core-shell one, which promotes the adsorption performance of copper ions and decreases the surface shrinkage of nanofibrous membranes during adsorption. The 30% CS conventional nanofibrous membranes at the pH=5 aqueous solution showed the optimum adsorption capacity of copper ions (86.4 mg/g). The smart combination of renewable biomass with effective chemical adsorptive sites, the electrospinning technology with interwoven porous structure and the adsorption method with low cost and facile operation shows a promising prospect for water treatment.

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 97
Francisco M. Espinosa ◽  
Manuel R. Uhlig ◽  
Ricardo Garcia

Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we have combined nanolithography, chemical functionalization, electrical measurements and molecular recognition methods to correlate the current measured by the SiNW transistor with the presence of specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithography (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements confirmed that electrical current changes measured by the device were associated with the deposition of avidin molecules.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 357
Andrei Tereshchenko ◽  
Danil Pashkov ◽  
Alexander Guda ◽  
Sergey Guda ◽  
Yury Rusalev ◽  

Catalytic properties of noble-metal nanoparticles (NPs) are largely determined by their surface morphology. The latter is probed by surface-sensitive spectroscopic techniques in different spectra regions. A fast and precise computational approach enabling the prediction of surface–adsorbate interaction would help the reliable description and interpretation of experimental data. In this work, we applied Machine Learning (ML) algorithms for the task of adsorption-energy approximation for CO on Pd nanoclusters. Due to a high dependency of binding energy from the nature of the adsorbing site and its local coordination, we tested several structural descriptors for the ML algorithm, including mean Pd–C distances, coordination numbers (CN) and generalized coordination numbers (GCN), radial distribution functions (RDF), and angular distribution functions (ADF). To avoid overtraining and to probe the most relevant positions above the metal surface, we utilized the adaptive sampling methodology for guiding the ab initio Density Functional Theory (DFT) calculations. The support vector machines (SVM) and Extra Trees algorithms provided the best approximation quality and mean absolute error in energy prediction up to 0.12 eV. Based on the developed potential, we constructed an energy-surface 3D map for the whole Pd55 nanocluster and extended it to new geometries, Pd79, and Pd85, not implemented in the training sample. The methodology can be easily extended to adsorption energies onto mono- and bimetallic NPs at an affordable computational cost and accuracy.

2022 ◽  
Dongdong Guo ◽  
Yong Wan ◽  
Jiangshan Li ◽  
Ruiqi Liu ◽  
Lei Liu ◽  

Abstract Modified bentonites for anti–seepage system application has been attracting global attentions. At the same time, the performances of modified bentonite containing retardation barrier exposed to organic–heavy metal pollutants have not been fully reported. In this study, the adsorption performances (one of the key evaluation indicators of retardation barrier) of nine kinds of commonly used modified bentonites on multiple contaminants were comparatively investigated. The X–ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses were also performed to unravel the adsorption mechanisms. Results show that the adsorption of modified bentonites on phenol and Pb(II) follows the order of SB–16 > PVA > CTAB > APAM > CTAB + PAC > PAC > CPAM > CTAB + PAC > CTAB + CPAM + APAM. Among all the samples, the bentonite modified with SB–16 showed the highest adsorption capacities for phenol and Pb(II). The surfactant molecules inserted in the interlayer space of montmorillonite increase the substrate spacing, which changes the structural properties of the bentonite from hydrophilic to hydrophobic and increases the adsorption of organic contaminants. On the other hand, the polymer has functional groups such as hydroxyl and carboxyl that can form a spatial three–dimensional cross–linking structure on the bentonite surface, providing more adsorption sites for heavy metal ions. These findings indicate the potential industrial applications of modified bentonite in a contaminant barrier system.

2022 ◽  
Hongmei Liu ◽  
Shihao Dang ◽  
Mingdeng Li ◽  
Baogui Ye

Increasing the adsorption sites and effective interactions between sorbents and the targets can improve the solid-phase extraction (SPE) efficiency. Herein, based on the advantages of MOFs and TiO2 nanotubes (TiO2...

Sign in / Sign up

Export Citation Format

Share Document