scholarly journals Spectra and time variability of Galactic black-hole X-ray sources in the low/hard state

2004 ◽  
Vol 425 (1) ◽  
pp. 163-169 ◽  
Author(s):  
D. Giannios ◽  
N. D. Kylafis ◽  
D. Psaltis
2003 ◽  
Vol 403 (1) ◽  
pp. L15-L18 ◽  
Author(s):  
P. Reig ◽  
N. D. Kylafis ◽  
D. Giannios

2019 ◽  
Vol 485 (2) ◽  
pp. 2744-2758 ◽  
Author(s):  
A Vahdat Motlagh ◽  
E Kalemci ◽  
T J Maccarone

Abstract We have performed a comprehensive spectral and timing analyses of Galactic black hole transients (GBHTs) during outburst decay in order to obtain the distribution of state transition luminosities. Using the archival data of the Rossi X-ray Timing Explorer (RXTE), we have calculated the weighted mean for state transition luminosities of 11 BH sources in 19 different outbursts and for disc and power law luminosities separately. We also produced histograms of these luminosities in terms of Eddington luminosity fraction (ELF) and fitted them with a Gaussian. Our results show the tightest clustering in bolometric power law luminosity with a mean logarithmic ELF of −1.70 ± 0.21 during the index transition (as the photon index starts to decrease towards the hard state). We obtained mean logarithmic ELF of −1.80 ± 0.25 during the transition to the hard state (as the photon index reaches the lowest value) and −1.50 ± 0.32 for disc-blackbody luminosity (DBB) during the transition to the hard-intermediate state (HIMS). We discussed the reasons for clustering and possible explanations for sources that show a transition luminosity significantly below or above the general trends.


Author(s):  
S E M de Haas ◽  
T D Russell ◽  
N Degenaar ◽  
S Markoff ◽  
A J Tetarenko ◽  
...  

Abstract We present quasi-simultaneous radio, (sub-)millimetre, and X-ray observations of the Galactic black hole X-ray binary, taken during its 2017–2018 outburst, where the source remained in the hard X-ray spectral state. During this outburst, GX 339−4 showed no atypical X-ray behaviour that may act as a indicator for an outburst remaining within the hard state. However, quasi-simultaneous radio and X-ray observations showed a flatter than expected coupling between the radio and X-ray luminosities (with a best fit relation of $L_{\rm radio} \propto L_{\rm X}^{0.39 \pm 0.06}$), when compared to successful outbursts from this system ($L_{\rm radio} \propto L_{\rm X}^{0.62 \pm 0.02}$). While our 2017–2018 outburst data only span a limited radio and X-ray luminosity range (∼1 order of magnitude in both, where more than 2-orders of magnitude in LX is desired), including data from other hard-only outbursts from GX 339−4 extends the luminosity range to ∼1.2 and ∼2.8 orders of magnitude, respectively, and also results in a flatter correlation (where $L_{\rm radio} \propto L_{\rm X}^{0.46 \pm 0.04}$). This result is suggestive that for GX 339−4 a flatter radio – X-ray correlation, implying a more inefficient coupling between the jet and accretion flow, could act as an indicator for a hard-only outburst. However, further monitoring of both successful and hard-only outbursts over larger luminosity ranges with strictly simultaneous radio and X-ray observations is required from different, single sources, to explore if this applies generally to the population of black hole X-ray binaries, or even GX 339−4 at higher hard-state luminosities.


2012 ◽  
Author(s):  
John A. Tomsick ◽  
Kazutaka Yamaoka ◽  
Emrah Kalemci ◽  
Stéphane Corbel ◽  
Philip Kaaret ◽  
...  
Keyword(s):  
X Ray ◽  

2015 ◽  
Vol 67 (1) ◽  
pp. 11-11 ◽  
Author(s):  
A. Yoshikawa ◽  
S. Yamada ◽  
S. Nakahira ◽  
M. Matsuoka ◽  
H. Negoro ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2019 ◽  
Vol 883 (2) ◽  
pp. 198 ◽  
Author(s):  
T. D. Russell ◽  
A. J. Tetarenko ◽  
J. C. A. Miller-Jones ◽  
G. R. Sivakoff ◽  
A. S. Parikh ◽  
...  

2020 ◽  
Vol 498 (4) ◽  
pp. 5873-5884
Author(s):  
Sudip Chakraborty ◽  
Nilam Navale ◽  
Ajay Ratheesh ◽  
Sudip Bhattacharyya

ABSTRACT MAXI J1820+070 is a newly discovered transient black hole X-ray binary, which showed several spectral and temporal features. In this work, we analyse the broad-band X-ray spectra from all three simultaneously observing X-ray instruments onboard AstroSat, as well as contemporaneous X-ray spectra from NuSTAR, observed during the hard state of MAXI J1820+070 in 2018 March. Implementing a combination of multicolour disc model, relativistic blurred reflection model relxilllpcp, and a distant reflection in the form of xillvercp, we achieve reasonable and consistent fits for AstroSat and NuSTAR spectra. The best-fitting model suggests a low temperature disc (kTin ∼ 0.3 keV), iron overabundance (AFe ∼ 4–5 solar), a short lamp-post corona height (h ≲ 8Rg), and a high corona temperature (kTe ∼ 115–150 keV). Addition of a second Comptonization component leads to a significantly better fit, with the kTe of the second Comptonization component being ∼14–18 keV. Our results from independent observations with two different satellites in a similar source state indicate an inhomogeneous corona, with decreasing temperature attributed to increasing height. Besides, utilizing the broader energy coverage of AstroSat, we estimate the black hole mass to be 6.7–13.9 M⊙, consistent with independent measurements reported in the literature.


2020 ◽  
Vol 493 (4) ◽  
pp. 5389-5396 ◽  
Author(s):  
A C Fabian ◽  
D J Buisson ◽  
P Kosec ◽  
C S Reynolds ◽  
D R Wilkins ◽  
...  

ABSTRACT The Galactic black hole X-ray binary MAXI J1820+070 had a bright outburst in 2018 when it became the second brightest X-ray source in the sky. It was too bright for X-ray CCD instruments such as XMM–Newton and Chandra, but was well observed by photon-counting instruments such as Neutron star Inner Composition Explorer (NICER) and Nuclear Spectroscopic Telescope Array(NuSTAR). We report here on the discovery of an excess-emission component during the soft state. It is best modelled with a blackbody spectrum in addition to the regular disc emission, modelled as either diskbb or kerrbb. Its temperature varies from about 0.9 to 1.1 keV, which is about 30–80 per cent higher than the inner disc temperature of diskbb. Its flux varies between 4 and 12 per cent of the disc flux. Simulations of magnetized accretion discs have predicted the possibility of excess emission associated with a non-zero torque at the innermost stable circular orbit (ISCO) about the black hole, which, from other NuSTAR studies, lies at about 5 gravitational radii or about 60 km (for a black hole, mass is $8\, {\rm M}_{\odot }$). In this case, the emitting region at the ISCO has a width varying between 1.3 and 4.6 km and would encompass the start of the plunge region where matter begins to fall freely into the black hole.


Sign in / Sign up

Export Citation Format

Share Document