spectral energy
Recently Published Documents


TOTAL DOCUMENTS

2238
(FIVE YEARS 707)

H-INDEX

93
(FIVE YEARS 14)

2022 ◽  
Vol 24 (4) ◽  
pp. 63-71
Author(s):  
Sergey N. Razinkov ◽  
Olga E. Razinkova

Using spectral energy equations of transmission-reception of wave processes in radio channel with scattering on object and direct radio channel, analysis of energy ratios of information signals and active masking interference at inputs of receivers of remote monitoring systems is carried out. Measures to reduce visibility are aimed at changing the reflective signatures of objects in the interests of reducing the de-masking features contained in secondary electromagnetic radiation to limits that exclude the performance of radar monitoring tasks at established distances and time intervals. Active interference is designed to mask information signals in receiving channels of radar at power that does not allow detecting their designers by passive radar. In case of joint application of not iceability reducing devices and active jammers, radar range reducing coefficient is determined by product of coefficient characterizing possibility of autonomous masking of information signals and coefficient achievable due to reduction of secondary electromagnetic radiation power in the second degree. The laws of increase of aircraft stealth from radar observation with joint application of technologies of reduction of radar visibility and masking by intentional interference created from sides of protected objects and from assigned points have been investigated. In order to maintain the desired signal-to-noise ratio at the output of the receiver with a decrease in the duration of the probing signal, it is necessary to proportionally increase the density of the emitted energy. With given antenna sizes, the maximum signal transmission range is proportional to the root square of their cyclic carrier frequency; increase of this parameter leads to increase of partial coefficient of directional action and effective area of antenna. With a decrease in the cyclic frequency of the carrier of the probing signal, inorder to maintain the required directional properties of the antennas, it is necessary to increase their dimensions.


2022 ◽  
Vol 163 (2) ◽  
pp. 60
Author(s):  
Ye Wang ◽  
Biwei Jiang ◽  
Jun Li ◽  
He Zhao ◽  
Yi Ren

Abstract The dust temperature and mass of the supernova remnants (SNRs) in M31 are estimated by fitting the infrared spectral energy distribution calculated from the images in the Spitzer/IRAC4 and MIPS24, Herschel/PACS70, 100, and 160, and Herschel/SPIRE 250 and 350 μm bands. Twenty SNRs with relatively reliable photometry exhibit an average dust temperature of 20.1 − 1.5 + 1.8 K, which is higher than the surrounding and indicating the heating effect of supernova explosion. The dust mass of these SNRs ranges from about 100 to 800 M ⊙, much bigger than the SNRs in the Milky Way. On the other hand, this yields the dust surface density of 0.10 − 0.04 + 0.07 M ⊙ pc−2, about half of the surrounding area, which implies that about half dust in the SNRs is destroyed by the supernova explosion. The dust temperature, the radius, and thus the dust mass all demonstrate that the studied SNRs are old and very likely in the snowplow or even fade-away phase because of the limitation by the far distance and observation resolution of M31, and the results can serve as a reference to the final effect of supernova explosion on the surrounding dust.


2022 ◽  
Vol 933 ◽  
Author(s):  
Erik Lindborg ◽  
Arne Nordmark

Following Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) we undertake a spectral analysis of a non-divergent flow on a sphere. It is shown that the spherical harmonic energy spectrum is invariant under rotations of the polar axis of the spherical harmonic system and argued that a constraint of isotropy would not simplify the analysis but only exclude low-order modes. The spectral energy equation is derived and it is shown that the viscous term has a slightly different form than given in previous studies. The relations involving energy transfer within a triad of modes, which Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) derived under the condition that energy transfer is restricted to three modes, are derived under general conditions. These relations show that there are two types of interaction within a triad. The first type is where the middle mode acts as a source for the two other modes and the second type is where it acts as a sink. The inequality indicating cascade directions which was derived by Gkioulekas & Tung (J. Fluid Mech., vol. 576, 2007, pp. 173–189) in Fourier space under the assumptions of narrow band forcing and stationarity is derived in spherical harmonic space under the assumption of dominance of first type interactions. The double cascade theory of Kraichnan (Phys. Fluids, vol. 10, 1967, pp. 1417–1423) is discussed in the light of the derived equations and it is hypothesised that in flows with limited scale separation the two cascades may, to a large extent, be produced by the same triad interactions. Finally, we conclude that the spherical geometry is the optimal test ground for exploration of two-dimensional turbulence by means of simulations.


2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.


2022 ◽  
pp. 147715352110515
Author(s):  
Z Li ◽  
F Zhang ◽  
X Song ◽  
R Dang

Spectral energy radiated by light sources is the primary source of colour damage in highly photosensitive artworks (HPAs). However, spectral power distributions differ for different light sources, and the absorption and reflection characteristics of different materials, when irradiated by each narrow spectral energy band, also differ. This could result in large differences in the degree of radiation damage for materials under the same lighting intensity. In this paper, the suitability of different light sources used to illuminate HPAs was experimentally investigated over a long period of time by irradiating nine types of typical HPA materials with 10 different narrow-band light sources. By analysing the colour difference data of the illuminated material against the amount of exposure, a mathematical model relating the spectral composition and the damage to the colour of HPA materials was obtained. Based on this, a colour damage evaluation equation for light sources used for lighting HPAs was proposed. Finally, the equations were discussed using an example.


2022 ◽  
Vol 21 (12) ◽  
pp. 305
Author(s):  
Ze-Rui Wang ◽  
Rui Xue

Abstract In addition to neutrino event IceCube-170922A which is observed to be associated with a γ-ray flare from blazar TXS 0506+056, there are also several neutrino events that may be associated with blazars. Among them, PKS B1424-418, GB6 J1040+0617 and PKS 1502+106 are low synchrotron peaked sources, which are usually believed to have the broad line region in the vicinity of the central black hole. They are considered as counterparts of IceCube event 35, IceCube-141209A and IceCube-190730A, respectively. By considering the proton-proton (pp) interactions between the dense gas clouds in the broad line region and the relativistic protons in the jet, we show that the pp model that is applied in this work can not only reproduce the multi-waveband spectral energy distribution but also suggest a considerable annual neutrino detection rate. We also discuss the emission from the photopion production and Bethe-Heitler pair production with a sub-Eddington jet power that is suggested in our model and find that it has little effect on the spectrum of total emission for all of three sources.


2022 ◽  
Vol 924 (2) ◽  
pp. 84
Author(s):  
Lyra Cao ◽  
Marc H. Pinsonneault ◽  
Lynne A. Hillenbrand ◽  
Michael A. Kuhn

Abstract In this paper we investigate the robustness of age measurements, age spreads, and stellar models in young pre-main-sequence stars. For this effort, we study a young cluster, λ Orionis, within the Orion star-forming complex. We use Gaia data to derive a sample of 357 targets with spectroscopic temperatures from spectral types or from the automated spectroscopic pipeline in APOGEE Net. After accounting for systematic offsets between the spectral type and APOGEE temperature systems, the derived properties of stars on both systems are consistent. The complex interstellar medium, with variable local extinction, motivates a star-by-star dereddening approach. We use a spectral energy distribution fitting method calibrated on open clusters for the Class III stars. For the Class II population, we use a Gaia G-RP dereddening method, minimizing systematics from disks, accretion, and other physics associated with youth. The cluster age is systematically different in models incorporating the structural impact of starspots or magnetic fields than in nonmagnetic models. Our mean ages range from 2–3 Myr (nonmagnetic models) to 3.9 ± 0.2 Myr in the SPOTS model (f = 0.34). We find that star-by-star dereddening methods distinguishing between pre-main-sequence classes provide a smaller age spread than techniques using a uniform extinction, and we infer a minimum age spread of 0.19 dex and a typical age spread of 0.35 dex after modeling age distributions convolved with observed errors. This suggests that the λ Ori cluster may have a long star formation timescale and that spotted stellar models significantly change age estimates for young clusters.


2022 ◽  
Vol 924 (1) ◽  
pp. 11
Author(s):  
Carlos Hervías-Caimapo ◽  
Anna Bonaldi ◽  
Michael L. Brown ◽  
Kevin M. Huffenberger

Abstract Contamination by polarized foregrounds is one of the biggest challenges for future polarized cosmic microwave background (CMB) surveys and the potential detection of primordial B-modes. Future experiments, such as Simons Observatory (SO) and CMB-S4, will aim at very deep observations in relatively small (f sky ∼ 0.1) areas of the sky. In this work, we investigate the forecasted performance, as a function of the survey field location on the sky, for regions over the full sky, balancing between polarized foreground avoidance and foreground component separation modeling needs. To do this, we simulate observations by an SO-like experiment and measure the error bar on the detection of the tensor-to-scalar ratio, σ(r), with a pipeline that includes a parametric component separation method, the Correlated Component Analysis, and the use of the Fisher information matrix. We forecast the performance over 192 survey areas covering the full sky and also for optimized low-foreground regions. We find that modeling the spectral energy distribution of foregrounds is the most important factor, and any mismatch will result in residuals and bias in the primordial B-modes. At these noise levels, σ(r) is not especially sensitive to the level of foreground contamination, provided the survey targets the least-contaminated regions of the sky close to the Galactic poles.


2022 ◽  
Vol 924 (1) ◽  
pp. 7
Author(s):  
Visal Sok ◽  
Adam Muzzin ◽  
Pascale Jablonka ◽  
Z. Cemile Marsan ◽  
Vivian Y. Y. Tan ◽  
...  

Abstract Compact star-forming clumps observed in distant galaxies are often suggested to play a crucial role in galaxy assembly. In this paper, we use a novel approach of applying finite-resolution deconvolution on ground-based images of the COSMOS field to resolve 20,185 star-forming galaxies (SFGs) at 0.5 < z < 2 to an angular resolution of 0.″3 and study their clump fractions. A comparison between the deconvolved images and HST images across four different filters shows good agreement and validates image deconvolution. We model spectral energy distributions using the deconvolved 14-band images to provide resolved surface brightness and stellar-mass density maps for these galaxies. We find that the fraction of clumpy galaxies decreases with increasing stellar masses and with increasing redshift: from ∼30% at z ∼ 0.7 to ∼50% at z ∼ 1.7. Using abundance matching, we also trace the progenitors for galaxies at z ∼ 0.7 and measure the fractional mass contribution of clumps toward their total mass budget. Clumps are observed to have a higher fractional mass contribution toward galaxies at higher redshift: increasing from ∼1% at z ∼ 0.7 to ∼5% at z ∼ 1.7. Finally, the majority of clumpy SFGs have higher specific star formation rates (sSFR) compared to the average SFGs at fixed stellar mass. We discuss the implication of this result for in situ clump formation due to disk instability.


Author(s):  
Xinchen Wei ◽  
Haitham Moffaqq Al-Obiedollah ◽  
Kanapathippillai Cumanan ◽  
Wei Wang ◽  
Zhiguo Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document