scholarly journals Breit-Pauli R-matrix calculation for fine structure effective collision strengths from electron impact excitation of Mg IX

2008 ◽  
Vol 493 (2) ◽  
pp. 697-710 ◽  
Author(s):  
C. E. Hudson
2015 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Arun Goyal ◽  
Indu Khatri ◽  
Sunny Aggarwal ◽  
A. K. Singh ◽  
Rinku Sharma ◽  
...  

We report the new extensive calculations for collision strengths and effective collision strengths of Electron impact excitation of fine structure transitions in F-like W using fully relativistic Dirac Atomic R-matrix Code. We have included all 113 target states which belong to 2s22p5, 2s2p6, 2s22p43l, 2s2p53l, 2p63l configurations. The convergence of reported collision strengths is tested by performingthe same calculations for lesser number of target states which verify the individuality of our results.Effective collision strengthsover a wide temperature range 104-107K are computed. Further, to assess the accuracy and authenticity of our target states energies, a similar parallel calculation has also been performed using a fully relativistic distorted wave (RDW) method and a comparison of energy levels with NIST, FAC and other experimental observations has been made. We believe that the collision strength results for all forbidden transitions within the 113 fine structure levels, presented in this paper will play a substantial role in fusion plasma diagnostics.


2006 ◽  
Vol 24 (2) ◽  
pp. 235-240 ◽  
Author(s):  
V. STANCALIE ◽  
V. PAIS

Electron collision strengths for electron-impact excitation of Li-like and Al ion are evaluated in close-coupling approximation using the multi-channel R-matrix method. Five LS target eigenstates are included in the expansion of the total wave function, consisting of the twon= 2 states withconfigurationsof 1s22s, 1s22p, and threen= 3 states withconfigurations1s23s, 1s23p, and 1s23d. Collision strengths are obtained in LS coupling using FARM code and in intermediate coupling scheme using the SUPERSTRUCTURE program. The effective collision strengths are calculated as function of temperature, up to a temperature that does not exceed half of the maximum energy in the R-matrix run.


Sign in / Sign up

Export Citation Format

Share Document